• 1、在平面直角坐标系中,点P(2,﹣4)关于x轴对称的点的坐标是 .
  • 2、如图是一个棱长为6的正方体木箱,点Q在上底面的棱上,AQ=2,一只蚂蚁从P点出发沿木箱表面爬行到点Q , 则蚂蚁爬行的最短路程是(  )

    A、6 B、8 C、10 D、12
  • 3、某市马拉松赛开跑,甲、乙两选手的行程y(千米)随时间x(小时)变化的图象(全程)如图所示.下列说法中错误的是(  )

    A、起跑后1小时内,甲在乙的前面 B、1小时时,两人都跑了20千米 C、甲比乙先到达终点 D、两人都跑了42千米
  • 4、中国古代人民在生产生活中发现了许多数学问题,在《孙子算经》中记载了这样一个问题,大意为:有若干人乘小舟过江,若每舟乘坐4人,则1只小舟无人乘坐;若每舟乘坐3人,则1人无舟可乘,问共有多少只小舟,多少人,设共有x只小舟,y人,可列方程组为(  )
    A、4(x-1)=y3x+1=y B、4(x+1)=y3x-1=y C、4x=3y3x+1=y D、4x+1=y3(x+1)=y
  • 5、下列命题中,属于真命题的是(  )
    A、对顶角相等 B、若|a|=|b|,则ab C、如果ab>0,则a>0,b>0 D、同位角相等
  • 6、100的算术平方根是(  )
    A、﹣10 B、10 C、±10 D、10
  • 7、在数:﹣3.4567,2.1˙ , ﹣π,1512中,无理数的个数是(  )
    A、1个 B、2个 C、3个 D、4个
  • 8、如图,在ABCD中,AE平分BAD , 交BC于点E,BF平分ABC , 交AD于点F,AEBF交于点P,连接EFPD

    (1)、求证:四边形ABEF是菱形;
    (2)、若AB=8,AD=12,ABC=60° , 求DP的长.
  • 9、计算:
    (1)、解方程:x22x8=0
    (2)、计算:122+132cos30°+2025π0
  • 10、如图,在平面直角坐标系中.RtABC的顶点A,C在坐标轴上,ACB=90°OA=OC=2AC=2BC , 反比例函数y=kx的图象经过点B.则k的值为

  • 11、已知反比例函数y=k1x的图象分别位于第二、第四象限,请写出一个符合题意的k的值
  • 12、如图,在7×7的正方形网格中,每个小正方形的边长均为1 , 若ABC的三个顶点都在格点上,则tanACB的值为(       )

    A、73 B、2 C、12 D、37
  • 13、如图,一次函数y=ax+b的图象与反比例函数y=kx的图象交于点A2,3Bm,2 , 则不等式ax+b<kx的解是(       )

       

    A、3<x<0x>2 B、x<30<x<2 C、2<x<0x>2 D、3<x<0x>3
  • 14、下列说法正确的是(       )
    A、各角分别相等的两个多边形相似 B、矩形的两条对角线互相垂直且相等 C、一元二次方程x2+2x1=0有两个不相等的实数根 D、若点C是线段AB的黄金分割点,AB=2 , 则AC=51
  • 15、如图,一棵大树被台风拦腰刮断,树根A到刮断点P的长度是4m , 折断部分PB与地面成40°的夹角,那么原来树的长度是(     )

    A、4+4cos40° B、4+4sin40° C、4+4sin40° D、4+4tan40°
  • 16、如图,夜晚冬冬从A点走向B点,他的影子会(       )

    A、一直变长 B、一直变短 C、先变短,再变长 D、先变长,再变短
  • 17、用配方法解方程x24x5=0时,配方结果正确的是(       )
    A、(x2)2=1 B、(x2)2=9 C、(x4)2=9 D、(x4__)2=21
  • 18、在平面直角坐标系xOy中,点A在半径为1的O上,B,C为平面内不重合的两点,对于O与直线BC给出如下定义:称点A到直线BC的距离为O与直线BC关于点A的理想距离,记为dO,BC,A , 特别地,点A在直线BC上时,dO,BC,A=0

    (1)、已知A1,0B0,2

    ①若C10,0 , 则dO,BC1,A=________,若C22,2 , 则dO,BC2,A=________;

    ②若点C在直线y=kx+30<k<2上,则dO,BC,A的取值范围是________;

    (2)、若点D3,4 , 且CD=2 , 点B在函数y=x+22<x<0的图象上,对于每一个点B,记dO,BC,A的最大值为d,直接写出d的取值范围以及d最小时点C的坐标.
  • 19、在ABC中,ACB>90° , 以A为中心,将线段AC逆时针旋转α(0°<α<180°) , 得到线段AD , 以A为中心,将线段AB顺时针旋转180°α , 得到线段AE , 连接DE

    (1)、根据题意补全图1,并证明DAE+BAC=180°
    (2)、如图2,点FBC的延长线上,且AFC=E+B , 用等式表示线段AFDE之间的数量关系,并证明.
  • 20、在平面直角坐标系xOy中,抛物线y=ax2+bx+1(a>0)经过点3,1
    (1)、求该抛物线的表达式(用含a的式子表示);
    (2)、过点(0,1)作y轴的垂线l,将抛物线y=ax2+bx+1(a>0)在直线l下方的部分沿直线l翻折,与抛物线的其他部分组成的图形记为G,直线x=t与直线y=ax+1交于点M,与图形G交于点N(不与点M重合),若MN的长度随t的增大而减小,求所有满足题意的t的取值范围.
上一页 25 26 27 28 29 下一页 跳转