相关试卷
- 广东省佛山市南海区2025-2026学年高二上学期学业水平测试(12月)数学试题
- 浙江省湖州市长兴县南太湖联盟2025-2026学年高二上学期12月联考数学试题
- 广东省衡水金卷2025-2026学年高一上学期12月联考数学试题
- 贵州省贵阳市七校2025-2026学年高二上学期12月联考数学试题
- 浙江省金华市卓越联盟2025-2026学年高一上学期12月阶段性联考数学试题
- 广西壮族自治区桂林市十二县中学2025-2026学年高三上学期12月教学质量联合测试数学试题
- 甘肃省武威第六中学2024-2025学年高一下学期开学质量检测数学试卷
- 广东省广州市真光中学汾水校区2025-2026学年高二上学期12月阶段测试数学试卷
- 四川省眉山市彭山区第一中学2025-2026学年高二上学期12月月考数学试题
- 河北省泊头市文宇中学2026届高三上学期12月月考数学试题
-
1、已知椭圆 , 该椭圆上一点到直线距离的最大值为 , 则该椭圆的离心率是( )A、 B、 C、 D、
-
2、已知直线与圆相交于 , 两点,若为正三角形,则实数的值是( )A、 B、 C、或 D、或
-
3、连续抛掷一枚质地均匀的骰子2次,记录每次朝上的点数,设事件A为“第一次的点数是2”,事件B为“第二次的点数小于4”,事件C为“两次的点数之和为偶数”,则( )A、 B、A与C相互独立 C、A与C对立 D、B与C互斥
-
4、如图,空间四边形OABC中, , , , 点M在上,且满足 , 点N为BC的中点,则( )
A、 B、 C、 D、 -
5、已知椭圆过点 , 则该椭圆的焦距为( )A、 B、 C、4 D、
-
6、我们知道,若 , 则有不等式成立(当且仅当时等号成立).从可以得到.即正数a,b,c的算术平均数的平方不大于a,b,c平方的算术平均数.请运用这个结论解答下列三道题:(1)、求代数式的最大值;(2)、已知 , 若不等式恒成立,求实数m的取值范围;(3)、若a,b, , 证明: .
-
7、已知函数 , .(1)、求方程的解;(2)、判断函数的奇偶性与单调性;(3)、对 , , 使得 , 求实数m的取值范围.
-
8、已知函数 .(1)、若 , 求在区间上的值域;(2)、若 , 设 , 若对任意实数 , 不等式恒成立,求实数的取值范围.
-
9、已知 , 函数 , 若对于任意实数a,方程有且只有一个实数根,且 , 函数的图象与函数的图象有三个不同的交点,则t的取值范围为 .
-
10、已知角的始边与x轴的非负半轴重合,终边与圆心在坐标原点的单位圆交于点 , 则 .
-
11、函数的定义域为 , 且对任意的实数 , 都有 , 且 , 则下列说法正确的是( )A、为偶函数 B、为周期函数且周期为12 C、 D、
-
12、下列命题正确的是( )A、若最小值为3 B、和表示同一个函数 C、若集合满足 , 那么这样的集合有8个 D、函数过定点
-
13、已知函数 , 则满足不等式的的取值范围是( )A、 B、 C、 D、
-
14、若函数在区间上单调递增,则的取值范围是( )A、 B、 C、 D、
-
15、已知 , 则的值是( )A、k B、 C、 D、
-
16、若 , 则“”是“有意义”的( )A、充分不必要条件 B、必要不充分条件 C、既不充分也不必要条件 D、充要条件
-
17、已知集合 , , 则( )A、 B、 C、 D、
-
18、已知点为抛物线:的焦点,过且垂直于轴的直线截所得线段长为4.(1)、求的值;(2)、为抛物线的准线上任意一点,过点作MA,MB与相切,A,B为切点,则直线AB是否过定点?若过,求出定点坐标;若不过,说明理由.
-
19、已知函数(是自然对数的底数).(1)、若 , 求的极值;(2)、若 , 求;(3)、利用(2)中求得的 , 若 , 数列满足 , 且 , 证明:.
-
20、已知函数 , .
(1)求函数的极值;
(2)求函数的单调区间;
(3)定义:同时相切于两条(或两条以上)的曲线的直线叫做两条(或两条以上)的曲线公切线.判断与是否存在公切线,如果不存在,请说明理由,如果存在请指出公切线的条数.