相关试卷

  • 1、在四棱锥PABCD中,底面ABCD为正方形,OAD中点,PO平面ABCD,PO=3,AB=2 , 平面PAB平面PCD=l

       

    (1)、求证:l//AB
    (2)、如图,MlPM=1 , 求点M到平面PBC的距离;
    (3)、设四棱锥PABCD的外接球球心为Q , 点Ml , 求直线QM与平面PAB所成角的正弦值的最大值.
  • 2、某企业为了推动技术革新,计划升级某电子产品,该电子产品核心系统的某个部件G由2个电子元件组成.如图所示,部件G是由元件A与元件B组成的串联电路,已知元件AB正常工作的概率都为23 , 且元件A,B工作是相互独立的.

       

    (1)、求部件G正常工作的概率;
    (2)、为了促进产业革新,该企业计划在核心系统中新增两个另一产地的电子元件,使得部件G正常工作的概率增大.已知新增元件正常工作的概率为p , 且四个元件工作是相互独立的.现设计以下两种方案:

    方案一:新增两个元件都和元件A并联后,再与B串联;

    方案二:新增两个元件,其中一个和元件A并联,另一个和元件B并联,再将两者串联.则该公司应选择哪一个方案,可以使部件G正常工作的概率达到最大?

  • 3、为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄的分组区间是:第1组20,25、第2组25,30、第3组30,35、第4组35,40、第5组40,45

    (1)、求图中x的值并根据频率分布直方图估计这500名志愿者中年龄在35,40的人数;
    (2)、估计抽出的100名志愿者年龄的众数、中位数;
    (3)、若在抽出的第2组、第4组和第5组志愿者中,采用按比例分配分层抽样的方法抽取6名志愿者参加中心广场的宣传活动,再从这6名中采用简单随机抽样方法选取2名志愿者担任主要负责人.求抽取的2名志愿者中恰好来自同一组的概率.
  • 4、AB=AD=1,AA1=2,BAD=π2,BAA1=DAA1=π3

    (1)、用向量AB,AD,AA1表示向量BD1 , 并求BD1
    (2)、求cosBD1,AC
  • 5、已知点A1,0,0B0,1,0C0,3,2 , 则点C到直线AB的距离为.
  • 6、抛掷一枚质地均匀的骰子两次,甲表示事件“第一次骰子正面向上的数字是5”,乙表示事件“两次骰子正面向上的数字之和是7”,丙表示事件“两次骰子正面向上的数字之积是12”,则下列说法正确的是(     )
    A、甲、乙对立 B、甲、丙互斥 C、甲、乙相互独立 D、乙、丙相互独立
  • 7、两条异面直线a,b所成的角为60 , 在直线a,b上分别取点A,E和点B,F , 使ABa , 且ABb.已知AE=6,BF=8,EF=14 , 则线段AB的长为(          )
    A、2012 B、1243 C、4383 D、8320
  • 8、某校为了解学生的身高情况,随机对部分学生进行抽样调查,已知抽取的样本中,男生、女生人数相同,分组情况为(单位:cmA:x<155B:155x<160C:160x<165D:165x<170E:x170 , 利用所得数据绘制如下统计图表:

    根据图表提供的信息,可知样本数据中下列信息正确的是(       )

    A、身高在155x<160区间的男生比女生多3 B、B组中男生和女生占比相同 C、超过一半的男生身高在165cm以上 D、女生身高在E组的人数有2
  • 9、已知z轴上一点M到点A1,0,2与点B1,3,1距离相等,则点M的竖坐标为(     )
    A、-3 B、-1 C、1 D、2
  • 10、在正方体ABCDA1B1C1D1中,异面直线AD1DB1所成角的余弦值为(     )
    A、22 B、22 C、0 D、1
  • 11、据统计,2023年12月成都市某区域一周AQI指数按从小到大的顺序排列为:45,50,51,53,53,57,60,则这组数据的25百分位数是(       )
    A、45 B、50 C、51 D、53
  • 12、已知函数fx=x+1xx1x.
    (1)、指出函数fx的基本性质:定义域,奇偶性,单调性,值域(结论不需证明),并作出函数fx的图象;
    (2)、若关于x的不等式kf2x2kfx+6k7>0恒成立,求实数k的取值范围;
    (3)、若关于x的方程f2x+mfx+n=0m,nR恰有6个不同的实数解,求实数n的取值范围.
     
  • 13、大学生小王响应国家号召决定自主创业,计划经销A,B两种商品,据市场调查统计,当投资额为tt0万元时,经销A,B商品所获得的收益分别为ft万元与gt万元,其中ft=t+1gt=10t+1t+1,0t5t22+6t9,5<t10 , 小王计划投入10万元全部用于经销这两种商品.
    (1)、假设小王只经销其中一种商品,求他能获得的收益;
    (2)、如果小王经销这两种商品,请帮他制订一个资金投入方案,使他能获得最大收益,并求出最大收益.
  • 14、已知函数fx=3x2x2+2x1,1
    (1)、单调性的定义证明fx在区间1,1上是增函数;
    (2)、解关于t的不等式:ft+12<f12t
  • 15、已知函数fx=1ex+112
    (1)、判断fx的奇偶性,并证明;
    (2)、若不等式fkx2+fkx10对一切xR恒成立,求实数k的取值范围.
  • 16、设f(x)=2x1,x212x+4,x>2 , 若有不相等的实数a,b,c满足fa=fb=fc , 则2a+2b+2c的取值范围是.
  • 17、已知定义在R上且不恒为0的函数fx , 对任意x,yR , 都有fxy=xfy+yfx , 则(     )
    A、f8=12f2 B、函数fx是奇函数 C、nN* , 有fxn=nfx D、f2=2 , 则f20+f21+f22++f25=258
  • 18、若ab>0,a+2b=6 , 则下列结论正确的有(       )
    A、ab92 B、a2+4b218 C、1a+2b的最小值为94 D、a2a+1+4b22b+1的最小值为73
  • 19、(多选)下列说法正确的是(       )
    A、函数f(x)的定义域为(0,3) , 则函数y=fx+1x1的定义域是(1,1)(1,2) B、fx=x+1x+2图象关于点(2,1)成中心对称 C、若函数fx1=x3x , 则fx=x2x2x1 D、若函数fx=x12 , 则对任意x1,x20,+ , 有fx1+fx22fx1+x22
  • 20、已知fx是定义在R上的奇函数,当x1,x20,+x1x2时,都有x2fx1x1fx2x1x2>0成立,f2026=2026 , 则不等式fxx>0的解集为(     )
    A、,20262026,+ B、2026,02026,+ C、2026,2026 D、12026,12026
1 2 3 4 5 下一页 跳转