• 1、如图,四边形ABCD是边长为2的正方形,半圆面APD平面ABCD , 点P为半圆弧AD上的动点(不与点A,D重合),下列说法正确的是(     )

       

    A、三棱锥PABD的四个面都是直角三角形,且体积最大值为23 B、P运动时,四棱锥PABCD的外接球半径为定值 C、PAD=60°时,异面直线PABD的夹角为45° D、半圆弧AD上存在唯一的点P , 使得直线PB与平面ABCD所成角的正弦值为1510
  • 2、某高中举行的数学史知识答题比赛,对参赛的2000名考生的成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为40,5050,6060,7070,8080,9090,100 , 若同一组中数据用该组区间中点值作为代表值,则下列说法正确的有(       )

       

    A、考生参赛成绩的平均分约为72.5 B、考生参赛成绩的第75百分位数约为81.5 C、分数在区间50,60内的频率为0.15 D、用分层抽样的方法从中抽取一个容量为200的样本,则成绩在区间70,80应抽取30
  • 3、已知实数x,y满足x2+y2+2x=0 , 则y2x+1的取值范围是(       )
    A、[3,3] B、(,3][3,+) C、33,33 D、,3333,+
  • 4、已知定点P2,0和直线l:1+λx+1λy6+2λ=0λR , 则点P到直线l的距离d的最大值为(     )
    A、210 B、25 C、23 D、22
  • 5、函数fx=xsinxcosx+2的图象大致为(     )
    A、 B、 C、 D、
  • 6、若复数z的共轭复数满足z¯=1+i , 则2+4iz=(       )
    A、1+3i B、3+3i C、3+i D、1+i
  • 7、已知a0,8 , 函数fx=4xax2+1,xR.
    (1)、若函数的值域为4,1 , 求a
    (2)、当x>0时,求证:fxa2x+2a
    (3)、当x10,x20,x1+x2=2时,求证:86a5fx1+fx24a.
  • 8、已知函数fx=x2+mx+nm,nR.
    (1)、若1f123f24 , 求f3的取值范围;
    (2)、记方程fx=0的两个根为x1x2 , 且x1x23,3

    (i)求f2的取值范围;

    (ii)求m25n的取值范围.

  • 9、已知函数fx=2x+m2x,mR.
    (1)、若fx为奇函数,

    (i)求m的值;

    (ii)当x0,4时,不等式fx2ax+2+fx21>0恒成立,求a的取值范围;

    (2)、若m<0 , 求gx=fx在区间0,1上的最大值pm.
  • 10、已知全集为R , 集合A=x1<2x<4B=xx24x+30.
    (1)、求ABRAB
    (2)、若C={xt+1<x<2t} , 且AC=A , 求实数t的取值范围.
  • 11、(1)求值:33823+0.01125(52)1234

    (2)若a+a1=3 , 求a3+a3a2+a2+1

  • 12、已知x1,x2,,xn,y1,y2,,yn2n个互不相等的正整数,满足xi12,yi12,xi+yi12i=1,2,,n , 若集合zz=xi+yi,i=1,2,,nn个元素,则n的最大值为..
  • 13、设xR,x表示不超过x的最大整数.已知函数fx=xx的图象与函数gx=kxk>0的图象共有2个交点,则k的取值范围是.
  • 14、已知幂函数fx=m22m+2xn过点2,14 , 则m+n=.
  • 15、已知定义在R上的函数fx满足:fxy=xfy+yfx+xy , 且x0,1fx+x<0x2,+fx>0 , 则(       )
    A、f1=1 B、fx为奇函数 C、x,0时,fx+x>0 D、fx2,+上单调递增
  • 16、已知函数fx=x22tx+3,x1tx,x>1R上单调递减,则t可以为(       )
    A、12 B、1 C、43 D、2
  • 17、下列命题为真命题的有(       )
    A、a>b,c<d , 则ac>bd B、a>b>0,c<d<0 , 则ac<bd C、a>b>0 , 则ac2>bc2 D、a>b>c>0 , 则ca<cb
  • 18、已知二次函数fx=a+bx22x+a+1b0对任意xR恒成立,则3a+b+2b的最小值为(       )
    A、2 B、22 C、3532 D、5+1
  • 19、已知函数fx=ax6+x3+bx2+cx+1 , 且f2=4 , 则f2=(       )
    A、-12 B、-4 C、2 D、5
  • 20、某车企生产A型汽车,每年需要固定投入100万元,此外每生产xA型汽车另需增加投资gx万元,当该款汽车年产量低于400辆时,gx=180x2+92x , 当年生产量不低于400辆时,gx=16x+360000x3500 , 若该款汽车售价为每辆15万元,且生产的汽车均能售完,则该工厂生产并销售这款新能源汽车的最高年利润为(       )
    A、2000万元 B、2100万元 C、2200万元 D、2300万元
上一页 20 21 22 23 24 下一页 跳转