相关试卷
- 2025届上海市宝山区高考二模数学试卷
- 【高考真题】2025年普通高等学校招生全国统一考试北京卷数学试卷
- 甘肃省会宁县第一中学2025届高三下学期高考模拟测试(二模)数学试题
- 【高考真题】2025年普通高等学校招生全国统一考试上海数学试卷
- 【高考真题】2025年普通高等学校招生全国统一考试数学试题(天津卷)
- 【高考真题】2025年普通高等学校招生全国统一考试(新高考Ⅰ卷)数学试卷
- 【高考真题】2025年普通高等学校招生全国统一考试(新高考Ⅱ卷)数学试题
- 北京市海淀区2024-2025学年高三下学期期末练习(二模)数学试题
- 四川省宜宾市普通高中2025届高三下学期高考适应性考试(三模)数学试卷
- 北京市朝阳区2024-2025学年高三下学期质量检测二数学试题
-
1、若数列满足:对任意的正整数 , 都存在正整数 , 使得成立,则称数列为“阶归化数列”.设为数列的前项和.(1)、若数列为“2阶归化数列”,且满足 , 证明: , 且等号在时取到.(2)、若数列为“16阶归化数列”,且满足 , 求的所有可能取值.(3)、若正项数列为“阶归化数列”,且满足.证明:对于任意的 , 均有.
-
2、已知双曲线的实轴长为2,且过点为其右焦点.(1)、求双曲线的标准方程.(2)、直线经过点 , 倾斜角为 , 与交于两点(点在两点之间),若 , 求的值.(3)、已知点 , 过点作直线与交于两点,记直线的斜率分别为 , 试问:是否为定值?若是,求出该定值;若不是,请说明理由.
-
3、已知函数 .(1)、若恒成立,求的取值范围;(2)、若 , 证明:当时, .
-
4、如图所示,在四棱锥中,平面为边上一点,且 .(1)、证明:平面 .(2)、求平面与平面夹角的余弦值.(3)、求直线与平面所成角的正弦值.
-
5、近几年我国新能源汽车产业快速发展,据行业数据显示,新能源汽车的数量在不断增加.下表为某城市统计的近5年新能源汽车的新增数量,其中为年份代号,(单位:万辆)代表新增新能源汽车的数量.
年份
2020
2021
2022
2023
2024
年份代号
1
2
3
4
5
新增新能源汽车万辆
1.2
1.8
2.5
3.2
3.8
(1)、计算样本相关系数 , 判断是否可以用线性回归模型拟合与的关系,当时,可以认为两个变量有很强的线性相关性;否则,没有很强的线性相关性.(2)、求关于的经验回归方程,并据此估计该城市2026年的新增新能源汽车的数量;参考数据:.参考公式:.
-
6、在中,角所对的边分别为 , 若 , 则的取值范围为.
-
7、已知集合 , 集合 , 若集合满足⫋ , 则这样的集合共有个.
-
8、已知定义在上的函数 , 若 , 都有 , 且的值域为 , 则以下结论正确的是( )A、 B、 C、为偶函数 D、的图象关于点中心对称
-
9、已知椭圆的左、右焦点分别是 , 左、右顶点分别是是椭圆上的一个动点(不与重合),则( )A、的离心率 B、的周长与点的位置无关 C、的取值范围为 D、直线与直线的斜率之积为
-
10、的展开式中( )A、前三项系数之和为112 B、二项式系数最大的项是第3项 C、常数项为240 D、所有项的系数之和为1
-
11、已知圆台的上、下底面圆的半径分别为2,5,侧面积为 , 则以该圆台外接球的球心为顶点,上、下底面圆为底面的两个圆锥的体积比为( )A、 B、 C、 D、
-
12、已知圆与轴相切于点,过点的直线交圆于另一点 , 点为坐标原点,若 , 则直线的方程为( )A、 B、 C、 D、
-
13、若函数在区间上有极值点,则实数的取值范围是( )A、 B、 C、 D、
-
14、正整数的倒数和,通常也称为调和数列的和.当很大时, , 其中称为欧拉-马歇罗尼常数,.若表示不超过的最大整数,则的值为( )(参考数据:)A、4 B、5 C、6 D、7
-
15、将函数的图象向左平移个单位长度,得到函数的图象,且的图象关于点对称,则的最小值为( )A、5 B、4 C、3 D、2
-
16、设函数在区间上单调递减,则实数的取值范围是( )A、 B、 C、 D、
-
17、已知向量 , 且 , 则( )A、8 B、 C、 D、2
-
18、已知复数满足 , 则( )A、 B、 C、1 D、
-
19、函数在区间上的零点个数为( )A、4 B、5 C、6 D、7
-
20、乒乓球比赛一般有两种赛制:“5局3胜制”和“7局4胜制”.“5局3胜制”指5局中胜3局的一方取得胜利,“7局4胜制”指7局中胜4局的一方取得胜利.(1)、甲、乙两人进行乒乓球比赛,经统计在某个赛季的所有比赛中,在不同赛制下甲、乙两人的胜负情况如下表.请先将下面的列联表补充完整,然后根据小概率值的独立性检验,分析不同赛制是否对甲获胜的场数有影响.
甲获胜场数
乙获胜场数
5局3胜
8
10
7局4胜
1
合计
20
(2)、若甲、乙两人采用5局3胜制比赛,设甲每局比赛的胜率均为 , 没有平局.记事件为“甲只要取得3局比赛的胜利,比赛结束且甲获胜”,事件为“两人赛满5局,甲至少取得3局比赛胜利且甲获胜”,试证明: .(3)、甲、乙两人进行乒乓球比赛,每局比赛甲的胜率都是 , 没有平局.若采用“赛满局,胜方至少取得局胜利”的赛制,甲获胜的概率记为.若采用“赛满局,胜方至少取得局胜利”的赛制,甲获胜的概率记为 , 试比较与的大小.参考公式: , 其中 .
0.100
0.050
0.010
0.001
2.706
3.841
6.635
10.828