• 1、已知,在等边ABC中,D、E分别为ACBC边上的点,CD=BE . 连接AEBD相交于点F.

    (1)、如图1,求证:BD=AE
    (2)、如图2,过点A作AHBD于H,若EF=HD , 求证:F为BH中点.
    (3)、如图3,在(2)的条件下,延长BD到点M,连接AM , 使MAC=2BAE , 若EF=1,AF=6 , 求DM长.
  • 2、如图,ABC中,C=90°DEAB于点E,F在AC上,且BE=FCBD=FD , 求证:ADBAC的平分线.

  • 3、如图所示,在平面直角坐标系中,ABC各顶点的坐标分别为A4,0B1,4C3,1

    (1)、作出A'B'C' , 使A'B'C'ABC关于x轴对称;
    (2)、写出点A'B'C'的坐标;
    (3)、求ABC的面积.
  • 4、如图,B处在A处的南偏西40°的方向上,C处在A处的南偏东15°的方向上,C处在B处的北偏东70°的方向上,求ACB的度数.

  • 5、已知:如图,A=B,OC=OD , 求证:AOCBOD

  • 6、如图,在ABC中,DEFG分别是ABAC的垂直平分线,分别交 BC于点 EG , 连接AEAG , 若BC=8 , 则AEG的周长为

  • 7、如图,点P是AOB平分线OC上一点,PEOAPFOB , 垂足分别是E和F,若PE=6 , 则PF=

  • 8、如图,已知1=2 , 再添加一个适当的条件使ABDACD(只需填写满足要求的一个条件即可).

  • 9、空调外机安装在墙壁上,如图所示,这种方法是利用了三角形的

  • 10、在ABC中,A,B,C的度数之比为2:3:4 , 则此三角形的形状为
  • 11、如图,把ABC沿线段DE折叠,使点A落在点F处,BC//DE , 若A+B=α90°<a<180°),则FEC=(     )

    A、α90° B、2α180° C、2α90° D、0°α
  • 12、如图,用尺规作图作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是(       )

    A、SAS B、AAS C、ASA D、SSS
  • 13、将直角三角板和直尺按照如图位置摆放,若1=58° , 则2的度数是(  )

    A、28° B、32° C、38° D、58°
  • 14、已知图中的两个三角形全等,则边AB的长为(     )

    A、20 B、24 C、27 D、无法确定
  • 15、如图,过ABC的顶点B,作AC边上的高,以下作法正确的是(     )
    A、 B、 C、 D、
  • 16、在RtABC中,若B是直角,C=53° , 则A的度数是(       )
    A、37° B、47° C、53° D、127°
  • 17、若点P(3,4)关于x轴的对称点为P' , 则P'的坐标是(  )
    A、(3,4) B、(3,4) C、(3,4) D、(4,3)
  • 18、下列长度的三条线段能组成三角形的是(       )
    A、1cm2cm3cm B、4cm5cm9cm C、5cm8cm15cm D、6cm8cm9cm
  • 19、以下是中国几个历史文化名城的图标,其中不是轴对称图形的是(  )
    A、 B、 C、 D、
  • 20、近期时令水果苹果销售旺盛,某水果店以每千克4元的价格从批发市场购进一批苹果.连续销售6天后还剩余12千克.因质量不佳无法继续售卖(其他损耗不计).若按平均每天出售80千克苹果为标准,超过的数量记为“+”,不足的数量记为“-”,如表记录的是该水果店连续六天苹果销售量情况:

    日期

    第一天

    第二天

    第三天

    第四天

    第五天

    第六天

    销售量(千克)

    13

    +24

    7

    +16

    +10

    8

    (1)、根据记录可知,销售量最多的一天比销售量最少的一天多出售多少千克苹果?
    (2)、该水果店这次共购进苹果多少千克?
    (3)、若水果店以每千克12元的价格开始出售这批苹果,销售三天后,最后三天决定按原售价打7.5折促销销售.试计算该水果店在这批苹果销售过程中共获得利润多少元?
上一页 3 4 5 6 7 下一页 跳转