• 1、 如图, 在 ABC中, C=90,BC>AC.
    (1)、请用尺规作图的方法作一个菱形ADBE,使点D在线段BC上;(保留作图痕迹,不写作法)
    (2)、在(1) 的条件下, 若AC=6,AB=10,求菱形ADBE的面积.
  • 2、为预防“甲流”传播,学校用某种含氯消毒剂对教室实施了药物喷洒消毒.在教室内,消毒药物在空气中的浓度ymg/m3随时间x(min)变化的函数关系如图所示,药物喷洒阶段y与x成正比例函数关系;喷洒结束后药物浓度逐渐下降,y与x成反比例函数关系.
    (1)、当x≥3时, 求y与x的函数关系式;
    (2)、当教室内的药物浓度不低于 3mg/m3时,才能有效灭活病毒.则此次消毒过程中,有效杀灭病毒的持续时间是多久?
  • 3、为丰富校园文化生活,某校开展了丰富的“庆元旦·迎新年”活动,其中游戏类活动有:A.成语接龙;B.抢凳子;C.剪纸比拼;D.猜灯谜;E.你画我猜.该校为了解学生对这五类游戏的喜爱情况,随机抽取部分学生进行了调查统计(每位学生必选且只能选择一类),并根据调查结果,绘制了两幅不完整的统计图如图所示,根据上述信息,解决下列问题:
    (1)、本次调查抽取的总人数是人,扇形统计图中E组对应扇形的圆心角为度:
    (2)、补全条形统计图;
    (3)、在剪纸比拼中,甲、乙、丙、丁4名同学脱颖而出,学校决定从这4人中随机抽取2人为全校同学进行剪纸展示,请用列表或画树状图的方法,求恰好抽到甲和丁的概率.
  • 4、解下列方程:
    (1)、x(x+2) =3x+6;
    (2)、2x2-4x-1=0.
  • 5、如图,在平面直角坐标系中,O为坐标原点,△ABC的边AB在x轴上,.AO=2BO,边AC与y轴交于点D,D恰为AC中点,反比例函数 y=kx(k>0)经过点C,若 SBCD=3,则k的值为
  • 6、如图,正方形 ABCD 绕点 B 顺时针旋转30°得到正方形A'BC'D',已知正方形 ABCD的边长为2,则两个正方形重叠部分的面积为.
  • 7、关于x的方程x2+2x+m-1=0有两个不相等的实数根,则m可取的最大整数是
  • 8、 如图, 在平面直角坐标系中, 矩形OABC的顶点坐标分别是O(0, 0), A(6, 0), B(6, 4),C(0,4).已知矩形OA'B'C'在第一象限,且与矩形OABC位似,位似中心是原点O,且矩形OA'B'C'的面积等于矩形OABC 的面积的 14,则点B’的坐标是
  • 9、 如图,矩形ABCD中,AB=3, AD=4, 点P是对角线AC上的点,将△ADP沿DP折叠,得到△EDP,若EP∥AB, 则AP的长是(    )
    A、85 B、2 C、125 D、3
  • 10、 如图,直线y=-x+m与双曲线 y=kx(k<0)交于点A(-2,3)和点B(3,-2),则不等式 -x+m<kx的解集是(    )
    A、x<-2或x>3 B、- 2<x<3 C、- 2<x<0或x>3 D、x<-2或0<x<3
  • 11、如图,用48m长的篱笆靠墙(墙足够长)围成一个面积是300m2的长方形鸡场,鸡场有一个2m的门,求鸡场的长和宽.设与墙垂直的边长为 xm,所列方程是(    )
    A、x(46-2x)=300 B、x(48-2x)=300 C、12x48-x=300 D、x(50-2x)=300
  • 12、如图,已知四边形ABCD 是平行四边形,下列说法正确的是(    )
    A、若AB⊥BC, 则▱ABCD是菱形 B、若AC=BD, 则▱ABCD是矩形 C、若AC⊥BD, 则▱ABCD是正方形 D、若AB=AD, 则▱ABCD是正方形
  • 13、如图(1)是一个置物架,它的侧面可以抽象为图(2),若AB∥CD∥EF, ACCE=34,DF=40cm,则BD的长为(    )
    A、20cm B、30cm C、40cm D、50cm
  • 14、在一个不透明的布袋中装有黄、白两种颜色的球共50个,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中黄球的个数可能是(    )
    A、15个 B、20个 C、30个 D、35个
  • 15、若x=4是关于x的一元二次方程 x2-mx+8=0的一个解,则m的值是(    )
    A、- 6 B、- 3 C、3 D、6
  • 16、如图所示的钢块零件主视图为(    )
    A、 B、 C、 D、
  • 17、如图,在ABC中,ACB=90°AB=15BC=9CDABC的中线.点P从点A出发,沿线段AB以每秒4个单位长度的速度向点B运动,过点P作PQAB交折线ACCB于点Q.当点P不与点D重合时,作点P关于点D的对称点M,连结QM , 以PQQM为邻边构造PQMN , 设点P的运动时间为t秒(t>0)

    (1)、边AC的长为
    (2)、连结NQ , 则线段NQ长度的最小值是
    (3)、作直线DN , 当直线DN垂直于ADC的一条边时,求t的值;
    (4)、当APQBPQABC相似,且直线PN恰好将其面积平分时,请直接写出t的值.
  • 18、根据以下素材,探索完成任务.

    素材1

    随着数字技术、新能源、新材料等不断突破,我国制造业发展迎来重大机遇.某工厂一车间借助智能化,对某款车型的零部件进行一体化加工,生产效率提升,该零件4月份生产100个,6月份生产144个.

    素材2

    该厂生产的零件成本为30元/个,销售一段时间后发现,当零件售价为40元/个时,月销售量为600个,若每个零件在此基础上售价每上涨1元,则月销售量将减少10个.

    问题解决

    任务1

    求该车间4月份到6月份生产数量的月平均增长率;

    任务2

    为使月销售利润达到10000元,而且尽可能让车企得到实惠,则该零件的实际售价应定为多少元/个?

  • 19、解方程
    (1)、x24x2=0
    (2)、2x2x15=0
  • 20、将正方体的部分展开图按如图方式放置在直角三角形纸片上,点DE落在斜边AB上,若小正方形的边长为1 , 则BC的长为

上一页 9 10 11 12 13 下一页 跳转