-
1、综合与实践
[情境]要将矩形铁板切割成相同的两部分,焊接成直角护板(如图1),需找到合适的切割线.
[模型]已知矩形(数据如图2所示).作一条直线 , 使与所夹的锐角为 , 且将矩形分成周长相等的两部分.
[操作]嘉嘉和淇淇尝试用不同方法解决问题.
如图3,嘉嘉的思路如下:
①连接 , 交于点;
②过点作 , 分别交 , 于点 ,
……
如图4,淇淇的方法如下:
①在边上截取 , 连接;
②作线段的垂直平分线 , 交于点;
③在边上截取 , 作直线 .
[探究]根据以上描述,解决下列问题.
(1)、图2中,矩形的周长为;(2)、在图3的基础上,用尺规作图作出直线(作出一条即可,保留作图痕迹,不写作法);(3)、根据淇淇的作图过程,请说明图4中的直线符合要求.(4)、[拓展]操作和探究中蕴含着一般性结论,请继续研究下面的问题.如图5,若直线将矩形分成周长相等的两部分,分别交边 , 于点 , , 过点作于点 , 连接 .
①当时,求的值;
②当最大时,直接写出的长.
-
2、一般固体都具有热胀冷缩的性质,固体受热后其长度的增加称为线膨胀.在(本题涉及的温度均在此范围内),原长为的铜棒、铁棒受热后,伸长量与温度的增加量之间的关系均为 , 其中为常数,称为该金属的线膨胀系数.已知铜的线膨胀系数(单位:);原长为2.5m的铁棒从加热到伸长了 .(1)、原长为0.6m的铜棒受热后升高 , 求该铜棒的伸长量(用科学记数法表示).(2)、求铁的线膨胀系数;若原长为1m的铁棒受热后伸长 , 求该铁棒温度的增加量.(3)、将原长相等的铜棒和铁棒从开始分别加热,当它们的伸长量相同时,若铁棒的温度比铜棒的高 , 求该铁棒温度的增加量.
-
3、如图1,图2,正方形的边长为5.扇形所在圆的圆心在对角线上,且不与点重合,半径 , 点 , 分别在边 , 上, , 扇形的弧交线段于点 , 记为 .(1)、如图1,当时,求的度数;(2)、如图2,当四边形为菱形时,求的长;(3)、当时,求的长.
-
4、某工厂生产 , , , 四种产品.为提升产品的竞争力,该工厂计划对部分种类的产品优化生产流程,降低成本;对其他种类的产品增加研发投入,提升品质.经研究,该工厂做出了甲、乙两种调整方案,这两种方案将对四种产品的成本产生不同的影响.
下面是该工厂这四种产品的部分信息:
a.调整前,各产品年产量的不完整的条形统计图(图1)和扇形统计图(图2).
b.各产品单件成本的核算情况统计表及说明.
A
B
C
D
调整前单件成本/(元/件)
18
26
20
36
调整后单件成本/(元/件)
方案甲
13
32
m
40
方案乙
16
n
18
32
说明:对于统计表中的数据,方案甲的平均数与调整前的相同,方案乙的中位数与调整前的相同.
根据以上信息,解答下列问题:
(1)、求调整前产品的年产量;(2)、直接写出 , 的值;(3)、若调整后这四种产品的年产量均与调整前的相同,请通过计算说明甲、乙两种方案哪种总成本较低. -
5、如图.四边形的对角线 , 相交于点 , , , 点在上, .(1)、求证:;(2)、若 , 求证: .
-
6、(1)、一道习题及其错误的解答过程如下:
计算: .
解:
第一步
第二步
. 第三步
请指出在第几步开始出现错误,并选择你喜欢的方法写出正确的解答过程.
(2)、计算: . -
7、(1)、解不等式 , 并在如图所给的数轴上表示其解集;(2)、解不等式 , 并在如图所给的数轴上表示其解集;(3)、直接写出不等式组的解集.
-
8、2025年3月是第10个全国近视防控宣传教育月,活动主题为“抓早抓小抓关键,更快降低近视率”,图是一幅眼肌运动训练图,其中数字对应的点均匀分布在一个圆上,数字0对应圆心.图中以数字对应的点为端点的所有线段中,有一条线段的长与其他的都不相等.若该圆的半径为1,则这条线段的长为 .
(参考数据: , )
-
9、甲、乙两张等宽的长方形纸条,长分别为 , . 如图,将甲纸条的与乙纸条的叠合在一起,形成长为81的纸条,则 .
-
10、平行四边形的一组邻边长分别为3,4,一条对角线长为 . 若为整数,则的值可以为 . (写出一个即可)
-
11、计算: .
-
12、在平面直角坐标系中,横、纵坐标都是整数的点称为整点.如图,正方形与正方形的顶点均为整点.若只将正方形平移,使其内部(不含边界)有且只有 , , 三个整点,则平移后点的对应点坐标为( )A、 B、 C、 D、
-
13、如图,将矩形沿对角线折叠,点落在处,交于点 . 将沿折叠,点落在内的处,下列结论一定正确的是( )A、 B、 C、 D、
-
14、在反比例函数中,若 , 则( )A、 B、 C、 D、
-
15、如图,在五边形中, , 延长 , , 分别交直线于点 , . 若添加下列一个条件后,仍无法判定 , 则这个条件是( )A、 B、 C、 D、
-
16、若 , 则( )A、 B、 C、3 D、6
-
17、抛掷一个质地均匀的正方体木块(6个面上分别标有 , , 中的一个数字),若向上一面出现数字1的概率为 , 出现数字2的概率为 , 则该木块不可能是( )A、
B、
C、
D、
-
18、若一元二次方程的两根之和与两根之积分别为 , , 则点在平面直角坐标系中位于( )A、第一象限 B、第二象限 C、第三象限 D、第四象限
-
19、一个几何体由圆柱和正方体组成,其主视图、俯视图如图所示,则其左主视图视图为( )A、
B、
C、
D、
-
20、“这么近,那么美,周末到河北”.嘉嘉周末到弘济桥游览,发现青石桥面上有三叶虫化石,他想了解其长度,在化石旁放了一支笔拍下照片(如图).回家后量出照片上笔和化石的长度分别为7cm和4cm,笔的实际长度为14cm,则该化石的实际长度为( )A、2cm B、6cm C、 D、10cm