相关试卷
-
1、下列说法不正确的是( )A、棱柱的上下底面是完全相同的图形 B、五棱柱有5个面、5条棱 C、圆锥的底面是圆 D、长方体与正方体都有六个面
-
2、是一款基于混合专家架构的大语言模型,拥有庞大参数量,知识储备深厚,当前最新版本参数规模为6850亿.数据6850亿用科学记数法表示为( )A、 B、 C、 D、
-
3、的倒数是( )A、2 B、 C、 D、
-
4、如图1,四边形内接于 , 为直径,上存在点 , 满足 , 连结并延长交的延长线于点 , 与交于点 .
(1)、若 , 请用含的代数式表示 .(2)、如图2,连结 , . 求证: .(3)、在(2)的条件下,若 , , 求的周长. -
5、一条隧道的截面如图所示,它的上部是一个以为直径的半圆O,下部是一个矩形 .
(1)、当米时,求隧道截面上部半圆O的面积;(2)、已知矩形相邻两边之和为8米,半圆O的半径为r米.①求隧道截面的面积关于半径的函数关系式(不要求写出r的取值范围);
②若2米3米,利用函数图象求隧道截面的面积S的最大值(取3).
-
6、如图,内接于 , 为的直径,交于点F, , 垂足为点E, .
(1)、求的大小;(2)、求阴影部分的面积. -
7、甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.

(1)用画树状图或列表的方法,求甲获胜的概率;
(2)这个游戏对甲、乙双方公平吗?请判断并说明理由.
-
8、如图所示,把置于平面直角坐标系中,请你按下列要求分别画图:
(1)、画出绕着原点O逆时针旋转得到的;(2)、在(1)的基础上求点C经过的路径长. -
9、已知 , 求下列各式的值.(1)、;(2)、 .
-
10、已知二次函数的图象如图所示,有下列结论:①;②;③;④;⑤若方程有四个根,则这四个根的和为2.其中正确的为( )
A、1个 B、2个 C、3个 D、4个 -
11、将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水面AB的宽度是( )cm.
A、6 B、 C、 D、 -
12、如图,四边形内接于 , 若 , 则的度数为( )
A、 B、 C、 D、 -
13、若、、为二次函数的图象上的三点,则 , , 的大小关系是( )A、 B、 C、 D、
-
14、已知的半径是 , , P是线段的中点,则点P与的位置关系是( )A、点P在内 B、点P在上 C、点P在外 D、无法确定
-
15、【探索发现】如图1,等腰直角三角形中, , , 直线经过点 , 过作于点 . 过作于点 , 则 , 我们称这种全等模型为“型全等”.(不需要证明)

【迁移应用】已知:直线的图像与轴、轴分别交于两点.
(1)、如图2,当时,在第一象限构造等腰直角 , ;①直接写出 , ;
②点的坐标 , 的面积;
(2)、如图3,当的取值变化,点随之在轴负半轴上运动时,在轴左侧过点作 , 并且 , 连接 , 问的面积是否发生变化?若不变,求出的面积;若变,请说明理由;(3)、【拓展应用】如图4,当时,直线:与轴交于点 , 点、分别是直线和直线上的动点,点在轴上的坐标为 , 当是以为斜边的等腰直角三角形时,点的坐标是______(直接写出答案即可). -
16、一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为千米,出租车离甲地的距离为千米.两车行驶的时间为小时,、关于的函数图象如图所示:
(1)、根据图象,直接写出 , 关于的函数关系式;(2)、当为何值时,两车相遇?(3)、当为何值时,两车相距280千米? -
17、先阅读,再解答.由可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号,例如: , 请完成下列问题:(1)、的有理化因式是______;化简______;(2)、计算:______;(3)、比较与的大小,并说明理由.
-
18、如图,在平面直角坐标系中,的三个顶点的坐标分别是 .
(1)、在图中作出关于轴对称的图形 , 点的坐标为______;(2)、求的面积;(3)、判断的形状并说明理由. -
19、解下列方程:(1)、;(2)、 .
-
20、如图,将对角线长为的正方形折叠,使点B落在边的中点处,点落在处,折痕为 . 连接 , 则的长为 .
