• 1、如图,一天傍晚,小方和家人去小区遛狗,小方观察发现,她站直身体时,牵绳的手离地面高度为AB=1.3米,小狗的高CD=0.3米,小狗与小方的距离AC=2.4米(绳子一直是直的),则牵狗绳BD=米. 

  • 2、已知{ x=2y=3是关于xy的二元一次方程ax+2y=3的一个解,则a的值为.
  • 3、 关于直线ly=2x-1,下列说法正确的是( )
    A、A(0,1)在直线l B、yx的增大而增大 C、把直线l向下平移1个单位长度得到直线l1 , 则l1y1=2x D、直线l经过第一、二、三象限
  • 4、《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,则可列二元一次方程组为(  )

    A、{x+y=250x+10y=30 B、{xy=250x+10y=30 C、{x+y=210x+50y=30 D、{x+y=210x+30y=50
  • 5、 在函数y=x+3x中,自变量x的取值范围是(                )
    A、x3 B、x3 C、x3x0 D、x3x0
  • 6、 下列各组数中,以它们为边长的线段能构成直角三角形的是(                )
    A、1,1,2 B、345 C、5,12,12 D、2,4,5
  • 7、 下列各式计算正确的是(                )
    A、23=5 B、4333=1 C、23×23=43 D、27÷3=3
  • 8、下列各数中是无理数的是(                )
    A、π B、4 C、83 D、3.1415926
  • 9、如图,在 RtABC中, ABC=90,AB=3,BC=4,BHAC,垂足为点H.D是边AC 上的一个动点,连结 BD,将 BCD沿着BD 折叠至 BFD,线段 BF 与直线AC 相交于点E.

    (1)、求 BH 的长;
    (2)、当AB=BE时,求 HBD的度数及CD 的长;
    (3)、点 D 在边AC 上移动时,若 BED为直角三角形,求CD 的长.
  • 10、定义:如果一个三角形的三边长分别为a,b,c,且满足 a2+b2=2c2,那么称这个三角形为优美三角形. 

    (1)、判断等边三角形是不是优美三角形,并说明理由.
    (2)、如图,在 ABC中, AB=AC=3,BC=3,在AC 上取一点D,使得 AD=12CD,连结 BD.求证: ABD是优美三角形.
  • 11、浙江省篮球联赛(简称浙BA)正在激烈进行,掀起了校园篮球运动的热潮.为更好地开展校园篮球运动,某校决定购买甲、乙两种品牌的篮球.已知购买3个甲品牌篮球和2个乙品牌篮球共花费410元;购买2个甲品牌篮球和5个乙品牌篮球共花费530元.

    解答下列问题:

    (1)、求甲品牌篮球与乙品牌篮球的单价各是多少元.
    (2)、学校为开展校内篮球联赛,决定购买甲、乙两种品牌的篮球共80 个,购买总费用不超过6 000元,且甲品牌篮球至少买18个,问学校共有哪几种购买方案?
  • 12、如图,在△ABC 和 DAE中,点 E 在边 AC 上, ACB=DEA=90,且 ABAD,AB=AD. 

    (1)、求证:△ABC≌△DAE;
    (2)、若 AB=13,AE=5,求 CE 的长.
  • 13、如图,△ABC中,AB=AC,AD,CE 分别是 ABC的中线和角平分线. 

    (1)、若 CAD=20,求∠ACE 的度数;
    (2)、若AB=6,AD=5,求 BC 的长.
  • 14、数学兴趣小组在完成一道数学题:

    如图,AC⊥BC,BD⊥AD,AD=BC.求证:BD=AC.

    小协说:“我可以根据全等三角形的判定定理‘AAS’证明两个三角形全等,从而得到BD=AC.”

    小助说:“我可以连结AB,根据直角三角形全等的判定定理‘HL’证明两个三角形全等,从而得到BD=AC.”

    请你判断两人的证法是否正确.若正确,选择其中一人的方法完成证明.

  • 15、解不等式 5x-123x+1,并把解集表示在数轴上.

  • 16、如图,等腰直角三角形 ABC 中, A=90,AB=AC, , 分别以点 B,C为圆心,BC 长为半径作弧,两弧交于点 D,连结AD.若BC=2,则AD 的值为.

  • 17、如图是我国古代著名的“赵爽弦图”示意图,此图是由四个全等的直角三角形和一个小正方形拼成的大正方形.已知大正方形ABCD 的面积为10,AE=1,则EF 的长为.

  • 18、如图,△ABC 中,AB=AC,D,E 分别是BC,AC 的中点.若∠B=80°,则∠ADE 的度数为.

  • 19、“a的一半与3的和小于6”用不等式表示为.
  • 20、如图,AC⊥BD,O为垂足,△AOD 的中线EO 的延长线交BC 于点F,∠C=∠D.若OE=OB=5,OC=12,则OD 的长为 (    )

    A、8 B、172 C、12013 D、14413
上一页 395 396 397 398 399 下一页 跳转