相关试卷
- 2017-2018学年数学浙教版七年级下册3.6同底数幂的除法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.5整式的化简 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.4乘法公式 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.3多项式的乘法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.2单项式的乘法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.1同底数幂的乘法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.7整式的除法 同步练习---基础篇
- 2017-2018学年数学浙教版七年级下册3.6同底数幂的除法 同步练习---基础篇
- 2017-2018学年数学浙教版七年级下册3.5整式的化简 同步练习---基础篇
- 2017-2018学年数学浙教版七年级下册3.4乘法公式 同步练习---基础篇
-
1、在实数2, , 0,这四个数中,最小的数是( )A、2 B、 C、0 D、
-
2、如图,平面直角坐标系中, , , , 过点作x轴的垂线 .
(1)、画出关于直线的轴对称图形 , 并写出点 , , 的坐标.(2)、的面积为(3)、在内有一点 , 则点P关于直线的对称点R的坐标为( , )(结果用含m,n的式子表示). -
3、如图,BD是△ABC的角平分线,AE丄BD交BD的'延长线于点E, ∠ABC = 72°,∠C:∠ADB =2:3,求∠BAC 和∠DAE 的度数.

-
4、如图,是等边三角形,点E在AC的延长线上,点D在线段AB上,连接ED交线段BC于点F,过点F作于点N, , , 若 , 则AN的长为 .

-
5、一个正多边形的一个外角等于它的一个内角的 , 这个正多边形是边形.
-
6、如图,在等腰三角形中, , , 是边上的中点, , , 分别是和上的动点,则的最小值是( )
A、10 B、 C、13 D、 -
7、如图,已知 , 则下列说法错误的是( )
A、 B、 C、 D、 -
8、同学们试着用数学的眼光观察世界,下列图形中,没有运用到三角形的稳定性的是( )A、
B、
C、
D、
-
9、我国古代数学名著《算法统宗》有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行8尺与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离的长为1尺,将它向前水平推送8尺时,即尺.秋千踏板离地的距离和身高5尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”请运用所学知识求出秋千的长是尺.

-
10、抛物线与直线y=x交于A , B两点(A在B的左边).y=x
(1)、求A , B两点的坐标.(2)、如图1,若P是直线AB下方抛物线上的点.过点P作x轴的平行线交抛物线于点M , 过点 P作y轴的平行线交线段AB于点N , 满足PM=PN 求点P的横坐标.(3)、如图2,经过原点O的直线CD交抛物线于C , D两点(点C在第二象限),连接AC , BD分别交x轴于E , F两点.若求直线CD的解析式. -
11、如图,四边形ABCD是正方形,点E在边CD上,点F在边BC的延长线上,DE=CF 射线AE交对角线BD于点G , 交线段DF于点H.
(1)、求证: DH=GH (温馨提示:若思考有困难,可尝试证明.(2)、求证:(3)、若=n直接写出 的值(用含n的式子表示). -
12、某校数学小组开展以“羽毛球飞行路线”为主题的综合实践活动.
【研究背景】羽毛球飞行路线所在的平面与球网垂直.
【收集数据】某次羽毛球飞行的高度y(单位:m)与距发球点的水平距离x(单位:m)的对应值如下表(不考虑空气阻力).
水平距离x/m
0
2
3
5
6
…
竖直高度y/m
1.1
2.3
2.6
2.6
2.3
…
【探索发现】数学小组借助计算机画图软件,建立平面直角坐标系、描点、连线(如图),发现羽毛球飞行路线是抛物线 y=ax2+kx+1.1的一部分.

【建立模型】求y与x的函数解析式(不要求写自变量取值范围).
【应用模型】
(1)、羽毛球在此次飞行过程中,飞行的高度能否达到2.8m?请说明理由.(2)、保持羽毛球飞行路线对应的抛物线的形状不变,改变发球方式,使其解析式变为y=ax2+kx+1.1发球点与球网的水平距离是5m.若羽毛球飞过球网正上方时,飞行的高度超过2.1m , 且球的落地点与球网的水平距离小于6m.求k的取值范围. -
13、如图是由小正方形组成的3个4闷格,每个小正方形的顶点叫作格点,矩形ABCD的四个顶点都是格点.仅用无刻度直尺在给定网格中完成如下两个问题,每个问题的画线不得超过五条.
(1)、如图1,E是格点,先将点E绕点A逆时针旋转( , 画对应点 F , 再画直线FG交AB于点G , 使直线FG-平分矩形ABCD的面积.(2)、如图2,先画点C关于直线BD的对称点M , 再画射线MN交BD于点N , 使MN∥AD -
14、如图,点A , B , C , D在⊙O上,BD是直径, , 过点C作CE∥BD交AB的延长线于点E.
(1)、求证:CE是⊙O的切线.(2)、若 , 求图中阴影部分的面积. -
15、某校开展“中国诗词”竞赛,学生成绩为正整数,满分为5分.为了解本次竞赛的情况,从该校随机抽取m名学生的成绩作为样本,将收集的数据整理并绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:
(1)、m的值是 , 扇形统计图中“5分”对应的扇形的圆心角大小是.(2)、该校共有1000名学生参加竞赛,估计成绩超过3分的学生人数.(3)、从样本的众数、中位数中选择一个统计量,写出它的值并说明它的实际意义. -
16、如图,四边形ABCD的对角线交于点O , AD∥BC.若 ▲ , 则AD=CB
从①OA=OC , ②∠ABC=∠CDA , ③AB=CD这三个选项中选择一个作为条件,使结论成立,并说明理由.

-
17、解不等式组
-
18、已知二次函数y= ax2+(a-2)x-2(a为常数,且a≠0).下列五个结论:
①该函数图象经过点(-1,0);
②若a=-1,则当x>-1时,y随x的增大而减小;
③该函数图象与x轴有两个不同的公共点;
④若a>2,则关于x的方程.ax2+(a-2)x-2=0有一个根大于0且小于1;
⑤若a>2,则关于x的方程 | ax2+(a-2)x-2|=2的正数根只有一个.
其中正确的是(填写序号).
-
19、如图,在△ABC中,AB=AC=10,BC=2 ,点D在边AC上,CD=3.若点E在边AB上,满足CE=BD , 则AE的长是.

-
20、某科技小组用无人机测量一池塘水面两端A , B的距离,具体过程如下:如图,将无人机垂直上升至距水面120m的P处,测得A处的俯角为 45°B处的俯角为 22°,则A , B之间的距离是m.(tan22°取0.4)
