相关试卷
- 2017-2018学年数学浙教版七年级下册3.6同底数幂的除法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.5整式的化简 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.4乘法公式 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.3多项式的乘法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.2单项式的乘法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.1同底数幂的乘法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.7整式的除法 同步练习---基础篇
- 2017-2018学年数学浙教版七年级下册3.6同底数幂的除法 同步练习---基础篇
- 2017-2018学年数学浙教版七年级下册3.5整式的化简 同步练习---基础篇
- 2017-2018学年数学浙教版七年级下册3.4乘法公式 同步练习---基础篇
-
1、阅读材料:如果一个三角形的三边长分别为a , b , c , 记 , 那么这个三角形的面积为这个公式叫“海伦公式”,它是利用三角形的三条边的边长直接求三角形面积的公式,我国南宋时期数学家秦九韶也得出了类似的公式,称三斜求积术,故这个公式又被称为“海伦——秦九韶公式”.完成以下问题:如图,在中, , , .
(1)、直接写出p的值,p= .(2)、求的面积;(3)、过点A作 , 垂足为D , 求线段的长. -
2、如图,在等腰三角形中, , .
(1)、求的面积;(2)、过点作边的高线 , 求的长. -
3、已知在平面直角坐标系中,点的坐标为 .(1)、若点在轴上,求出点的坐标;(2)、点的坐标为 , 若轴,求出点的坐标.
-
4、春天到了,奇奇和妙妙一同去春游.如图,有一座景观桥 , 他俩一同坐在离桥头A的凉亭D处,准备从桥的不同方向到达景点C.奇奇先走到桥尾B到岸边后再坐船到景点C , 妙妙先走到桥头A到岸边,再沿与桥垂直的小路走到达景点C , 若距离均以直线计算,且两人所经过的距离相等,请利用所学知识计算桥的长是多少?

-
5、计算: .
-
6、计算:(1)、;(2)、 .
-
7、如图,三角形纸片中, , 沿和将纸片折叠,使点B和点C都落在边上的点P处,则的长是 .

-
8、如图,在数轴上点表示的实数是 .

-
9、若 , 那么的值为 , 若 , 那么的值为 .
-
10、16的算术平方根是 , 16的立方根是 , 的平方根是 .
-
11、下列各式计算正确的是( )A、 B、 C、 D、
-
12、若点的坐标是 , 则点到轴的距离为( )A、4 B、 C、3 D、
-
13、如图,小手盖住的点的坐标可能为( )
A、 B、 C、 D、 -
14、下列说法中,能确定位置的是( )A、某电影院第2排 B、兰州市敦煌路 C、北偏东 D、东经 , 北纬
-
15、 2024 年 4 月 25 日 20 时 59 分,神舟十八号载人飞船成功发射,中国载人航天与空间站建设迎来全新的发展。为了弘扬航天精神,某中学开展了航天知识竞答活动,学校随机抽取了八年级的部分同学的成绩进行整理,将数据分成五组,A 组:50≤x<60;B 组:60≤x<70;C组:70≤x<80;D组:80≤x<90;E组:90≤x<100,并绘制了频数直方图和扇形统计图。

根据以上信息,解答下列问题:
(1)、本次随机抽取了名同学的成绩,请补全频数直方图。(2)、在扇形统计图中,A组所在扇形的圆心角为°。(3)、已知 D 组中成绩为80分的学生有2名,规定本次航天知识竞赛活动80分以上的成绩为优秀,若全校共有1 750名学生,请估计全校取得优秀成绩的学生有多少名。 -
16、某校七年级学生举行了“健康菜谱”设计活动,让学生尝试设计一份健康菜谱,菜谱需符合“减油、增豆、加奶”的原则。现收集了七年级2班同学们设计的菜谱(一人一份),并将菜中的主要食材分类、整理成如图的统计图。

根据以上信息回答下列问题:
(1)、七年级2 班共有 ▲ 人,请补全条形统计图。(2)、“谷物”所对应的扇形圆心角为°。(3)、若该校七年级学生共有 1 200 人,则选择“蔬果”作为食谱主要食材的学生约有多少人? -
17、近年来,我国重视农村电子商务的发展。如图的统计图反映了2016~2023年中国农村网络零售额情况,根据统计图提供的信息,下列结论不一定正确的是 ( )
A、2023年中国农村网络零售额最高 B、相邻两年零售额增加量最大的是 2016~2017 年 C、2016~2023 年,中国农村网络零售额持续增加 D、从2021年5 月开始,中国农村网络零售额突破20 000亿元 -
18、 A,B两个工程队分别接到36千米的道路施工任务。以下是两个工程队的施工规划。
A工程队
前两天施工速度为x千米/天,第三天开始每天都按第一天施工速度的2倍施工(预计比全程只按x千米/天的速度完成施工的时间提前3天)。
B工程队
甲方案:计划前18千米按每天施工a千米完成,剩下的18千米按每天施工b千米完成,预计完成生产任务所需的时间为t1天。
乙方案:设完成施工任务所需的时间为 t2天,其中一半时间每天完成施工a千米,另一半时间每天完成施工b千米。
特别说明:两种方案中的a,b均为10 以内的正整数,且a≠b。
(1)、问A工程队完成施工任务需要多少天?(2)、若要尽快完成施工任务,B工程队应采取哪种方案?说明你的理由。(3)、若B 工程队采用甲方案完成施工时间与A工程队完成时间相同,直接写出 a 的值。 -
19、随着 5G网络技术的发展,市场对5G产品的需求越来越大。为了满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500 万件产品所需的时间与更新技术前生产400 万件产品所需的时间相同,求更新技术前每天的产量。设更新技术前每天生产x万件产品,则根据题意可列方程( )
A、 B、 C、 D、 -
20、根据多项式的乘法法则,可知((ax+p)(bx+q) +pq。那么,反过来,也有 + pq=(ax+p)(bx+q)。具体分解过程可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘再求和,使其等于一次项系数。例如:
因式分解:
第一步:分解二次项系数,2=1×2;
第二步:分解常数项,-3=-1×3=1×(-3);
第三步:如图所示,验算“交叉相乘之和”:

③1×(-3)+2×1=-1。
发现③中“交叉相乘之和”的结果等于一次项系数-1,故将十字交叉线上的数对应写在两个相乘的多项式中,得 。这种因式分解的方法称为十字相乘法。
(1)、用“十字相乘法”分解因式:(2)、因式分解:(3)、因式分解: