相关试卷
- 2017-2018学年数学浙教版七年级下册3.6同底数幂的除法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.5整式的化简 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.4乘法公式 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.3多项式的乘法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.2单项式的乘法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.1同底数幂的乘法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.7整式的除法 同步练习---基础篇
- 2017-2018学年数学浙教版七年级下册3.6同底数幂的除法 同步练习---基础篇
- 2017-2018学年数学浙教版七年级下册3.5整式的化简 同步练习---基础篇
- 2017-2018学年数学浙教版七年级下册3.4乘法公式 同步练习---基础篇
-
1、如图,一次函数的图象与轴交于点 , 与反比例函数的图象交于点 .
(1)、求点的坐标;(2)、当的面积为9时,求一次函数的表达式.(3)、根据图象,写出使一次函数值大于反比例函数值的的取值范围. -
2、小明大学毕业后和同学创业,合伙开了一家网店,暑期销售原创设计的手绘图案T恤衫,已知每件T恤衫的成本价为60元,当销售价为100元时,每天能售出20件;经过一段时间销售发现,当销售价每降低1元时,每天就能多售出2件,(1)、若降价8元,则每天销售T恤衫的利润为多少元?(2)、小明希望每天获得的利润达到1050元并且优惠最大,则每件T恤衫的销售价应该定为多少?
-
3、如图,在中, , , , 所对的边分别为 , , , 且 , , 求这个直角三角形的其他元素( , , , 边长精确到1).

-
4、画出如图所示几何体的主视图、左视图和俯视图.

-
5、如图,在△ABC中,点D、E分别为AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S△ADE.

-
6、化简:已知 , 求的值.
-
7、解方程:(1)、(2)、
-
8、物理课上学过小孔成像的原理,它是一种利用光的直线传播特性实现图像投影的方法.如图,燃烧的蜡烛(竖直放置)经小孔在屏幕(竖直放置)上成像 , 设 , 小孔到的距离为 , 则小孔到的距离为 .

-
9、点在反比例函数的图象上,那么 , 该函数的图象位于第象限.
-
10、九年级(1)班文学小组在图书共享活动中互赠图书,每名同学都把自己的图书向本组其他成员赠送一本,全组共互赠了132本图书.如果设全组共有名同学,依题意,可列出的方程是( )A、 B、 C、 D、
-
11、下列图形是常见的交通指示图标,其中是中心对称图形的是( )A、
B、
C、
D、
-
12、在平面直角坐标系xOy中,对于内的一点M,若存在点N使得线段的中点恰好在上,则称点N是点M关于的“关联点”;特别地,当点N是点M关于的“关联点”且为直角三角形时,则称点N是点M关于的“直角关联点”.
(1)、如图,已知点 , 的半径为2.①在点 , , 中,点A关于的“关联点”是_______;
②若点B是点A关于的“直角关联点”,且点B在第一象限,直接写出点B的坐标;
③若直线上有且只有一个点是点A关于的“关联点”,且该点恰好为点A关于的“直角关联点”,直接写出k的值;
(2)、已知的半径为3,若存在半径为r的 , 对于上的任意一点Q,都存在上的点C与内一点D,满足 , 且点Q为点D关于的“直角关联点”,直接写出r的取值范围. -
13、如图, , 点B为射线上一定点,点C为射线上一动点,连接 , D为线段上一点, , 将线段绕点B顺时针旋转得到线段 , 连接 , , 线段与交于点F,当点C运动到如图所示位置时,有 .
(1)、①请补全图形;②求的大小(用表示);(2)、若 , 用等式表示与的数量关系并证明. -
14、在平面直角坐标系中,已知抛物线 .(1)、求抛物线的对称轴(用含a的式子表示);(2)、和是抛物线上的两点,若对于 , , 还有 , 求a的取值范围.
-
15、某型号清洁机器人在执行任务时,其“清洁效率”和“系统功率”会随移动速度发生变化.技术人员在标准测试环境下记录了实验数据:
移动速度
清洁效率
系统功率
10
16
22
28
34
【模型说明】
Ⅰ.功率模型:系统功率P与速度v之间近似满足一次函数关系.
Ⅱ.效率模型:清洁效率理论上等于速度与清扫宽度的乘积,但实测数据显示增长趋势逐渐放缓,这是因为在较高速度下,单次清扫的清洁度会下降(例如,有更多灰尘未被吸入),导致“有效清洁面积”的增长速度低于理论值.本实验数据反映的是综合了覆盖速度与清洁效果的“有效清洁效率”
(1)、分析数据,可以发现,可以用函数刻画清洁效率C与移动速度v之间的关系,在给出的平面直角坐标系中,画出该函数的图象;
(2)、若要求系统功率P不超过 , 则移动速度v的最大允许值为_______ ;(3)、为优化机器人性能,技术人员定义综合性能指标:(单位功耗创造的清洁效率).①满足的速度范围约为______________;(结果保留一位小数)
②在此速度范围内,清洁效率C的最小值约为_______ . (结果保留一位小数)
-
16、如图,在三角形中,点E为边上一点,以为直径的与直线相切于点D,点D在线段上,连接 , 若 .
(1)、求证:;(2)、若 , , 求的长. -
17、二次函数的图象经过点;当时,该函数有最小值为 .(1)、求该二次函数的解析式;(2)、在坐标系中直接画出该二次函数图象和一次函数的图象;(3)、直线与抛物线的交点为 , , 和直线的交点为 , 当时,直接写出的取值范围.
-
18、如图,在平面直角坐标系中,已知线段 , 其中点 , 点;
(1)、在图中画出线段关于原点中心对称的图形 , 并标注字母;(2)、点的坐标为_______;点的坐标为_______;(3)、_______. -
19、已知 , 求代数式的值.
-
20、解方程: .