相关试卷
- 2017-2018学年北师大版数学八年级下册同步训练:6.4 多边形的内角和与外角和
- 2017-2018学年北师大版数学八年级下册同步训练:6.3 三角形的中位线
- 2017-2018学年北师大版数学八年级下册同步训练:6.2.2 平行四边形的判定 ——用对角线的关系判定平行四边形
- 2017-2018学年北师大版数学八年级下册同步训练:6.2.1 平行四边形的判定——用边的关系判定平行四边形
- 2017-2018学年北师大版数学八年级下册同步训练:6.1 平行四边形的性质 课时2
- 2017-2018学年北师大版数学八年级下册同步训练:6.1 平行四边形的性质 课时1
- 2017-2018学年北师大版数学八年级下册同步训练:5.4分式方程课时2
- 2017-2018学年北师大版数学八年级下册同步训练:5.4 分式方程课时1
- 2017-2018学年北师大版数学八年级下册同步训练:5.3 分式的加减法 课时2
- 2017-2018学年北师大版数学八年级下册同步训练:5.3 分式的加减法 课时1
-
1、先化简,再求值: , 其中 , .
-
2、计算:(1)、 .(2)、 .
-
3、计算的值为;
-
4、中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾 , 弦 , 则小正方形的面积是( )
A、3 B、4 C、6 D、9 -
5、如图所示是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积分别为2,5,1,2,则最大的正方形E的面积是( )
A、7 B、10 C、20 D、34 -
6、下列二次根式中,是最简二次根式的是( )A、 B、 C、 D、
-
7、要使二次根式有意义,则x的取值范围是( )A、 B、 C、 D、
-
8、如图,在中,是边上的中线,交于点 , 为的中点,连接 . 已知 , 的面积为24.
(1)、求的长.(2)、若 , 求与的周长差. -
9、如图,在平面直角坐标系中,抛物线关于直线对称,与x轴交于、B两点,与y轴交于点C.
(1)、求抛物线的解析式;(2)、点P为抛物线对称轴上一点,连接 , 将线段绕点P逆时针旋转 , 使点B的对应点D恰好落在抛物线上,求此时点P的坐标;(3)、在线段上是否存在点Q,使存在最小值?若存在,请直接写出点Q的坐标及最小值;若不存在,请说明理由. -
10、已知二次函数 , 当时,则y的取值范围是( )A、 B、 C、 D、
-
11、如图,交于点 , , 点在线段上, , .
(1)、求证∶;(2)、若 , , 求的度数. -
12、如图,在中,平分 , , . 求的度数.

-
13、已知抛物线的函数解析式为y=x2-(2m-1)x+m2-m
(1)求证:此抛物线与x轴必有两个不同的交点;
(2)若此抛物线与直线y=x-3m+4的一个交点在y轴上,求m的值.
-
14、一个等腰三角形,其中两条边长度的比是 , 其中一条边长度是 , 这个等腰三角形的周长最大可以是( ) .A、18 B、24 C、45 D、60
-
15、比较下面两个数的大小(用“” “” “” )
(1)1 ;(2) ;(3) .
-
16、下列各数 , , 0,π,0.0123中,有理数的个数有( )A、4个 B、3个 C、2个 D、1个
-
17、某地为有力推进乡村全面振兴,拓宽农产品的销售渠道,利用互联网技术,通过电商平台,让农产品直接面向消费者,提高农产品销售效率.其中,销售一批成本为30元的农产品,按销售单价不低于成本价,且不高于50元销售,经调查发现,该商品每天的销售量与销售单价(元)之间的关系如图所示,设每天的销售利润为元.
(1)、请分别求出与 , 与的函数解析式;(2)、销售单价定为多少元时,每天的销售利润为800元?(3)、销售该商品每天获得的利润能否达到1300元?若能求出此时的单价,若不能请说明理由. -
18、我国某地一年中最高温度是42摄氏度,最低温度是摄氏度,最高温度与最低温度相差摄氏度.
-
19、定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“亲子线”.
(1)、如图1,△ABC的三个顶点均在正方形网格中的格点上,若四边形ABCD是以AC为“亲子线”的四边形,请只用无刻度的直尺,确定一点D , 请你在图1中找出满足条件的点D , 并画出这个四边形.保留画图痕迹(找出1个即可);(2)、①如图2,在四边形ABCD中,∠DAB=90°,∠DCB=135°,对角线AC平分∠DAB.请问∠ACD+∠ADC= ▲ °?此时对角线AC是四边形ABCD的“亲子线”吗?请说明理由;②若 , 求AD•AB的值.
(3)、如图3,在(2)的条件下,若∠D=90°,在AD边上取一点E , 使 , 过点E作EF∥CD交AC于点F , 得到△AEF , 连接CE、BF , 在△AEF绕点A旋转的过程中,当CE所在的直线垂直于AF时,请你直接写出BF的长. -
20、请根据以下素材,完成探究任务:
【汽车盲区与行车安全实践】
素材一
汽车盲区是指司机位于正常驾驶位置时,其视线被车体遮挡而不能直接观察到的那部分区域.在汽车行驶时,若行人、非机动车处于汽车盲区内,极易引发交通事故.如图1,某型号小汽车的车头、车尾盲区(可以近似看作矩形),以及两侧后视镜的可见区域.

素材二
如图2,若司机视线高度AB=1.5m , 车前盖最高处与地面距离CD=1m , 驾驶员与车头水平距离BE=2m , 车前盖最高处与车头水平距离DE=0.5m , 点M在EF上,ME=0.8m.

素材三
如图3,这辆小汽车在平直的公路上匀速行驶,正后方跟随一辆速度为90km/h的摩托车.若此时小汽车司机紧急刹车,那么摩托车司机也随即刹车,但摩托车司机有一个1.2秒的反应时间.已知小汽车从开始刹车到完全停住的滑行距离为22米,摩托车从开始刹车到完全停住的滑行距离为32米,小汽车车尾盲区为正后方长为5米的矩形区域.

问题解决
任务一
(1)①如图2,求车头盲区EF的长度;
②在M处有一个高度为0.5m的物体,驾驶员能观察到物体吗?请作出判断,并说明理由;
任务二
(2)如图3,在摩托车刹车前,摩托车应与小汽车至少保持 ▲ 米的距离,才不会闯入小汽车的车尾盲区.