-
1、某市大力推进新能源汽车充电桩建设,助力绿色交通发展,截至2025年初,全市公共充电桩数量已从2023年初的10万个增长至16.9万个,设全市公共充电桩数量的年平均增长率为x,则可列方程为( )A、10(1+2x)=16.9 B、 C、 D、10(1+x)=16.9
-
2、当自变量x>1时,下列函数y随x的增大而增大的是( )A、y=-3x B、 C、y=3x+1 D、
-
3、下列运算正确的是( )A、 B、 C、 D、
-
4、如图,秦岭钟南山公路隧道是我国自主设计、施工的我国最长的双洞单向高速公路隧道,一度被誉为“天下第一隧”.隧道线形为直线,建成后通行里程大大缩短.下面能解释路程缩短原因的是( )
A、垂线段最短 B、两点确定一条直线 C、两点之间,线段最短 D、过一点有且只有一条直线与已知直线垂直 -
5、如图,生活中常见的交通锥可以近似看作圆锥的形状.关于该圆锥的三视图,下列说法正确的是( )
A、主视图与左视图相同 B、主视图与俯视图相同 C、左视图与俯视图相同 D、三种视图都相同 -
6、截至2025年5月,国家智慧教育平台注册用户已突破1.64亿,成为世界第一大教育资源数字化中心和平台.将1.64亿用科学记数法表示应为( )A、 B、 C、 D、
-
7、如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)、数轴上点B表示的数是 , 点P表示的数是(用含t的代数式表示);(2)、动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?
②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?
-
8、(1)、请观察下列算式:
则第10个算式为;第n个算式为;
(2)、运用以上规律计算:(3)、如果|a-1|+(b-2)2=0,求的值.
-
9、某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);
星期
一
二
三
四
五
六
日
增减
+5
-2
-4
+13
-6
+6
-3
(1)、根据记录的数据,该厂生产风筝最多的一天是星期;(2)、产量最多的一天比产量最少的一天多生产多少只风筝?(3)、该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元? -
10、已知下列各数,按要求完成各题:
+4.5, , 0,-2.5,6,-5,+(-3)
(1)、负数集合:{…};(2)、用“<”把它们连接起来是;(3)、把已知各数表示在数轴上.
-
11、计算:(1)、;(2)、12.5×8÷12.5×8.
-
12、计算:(1)、5+(-6)+3-(-4);(2)、-23+|-5+4|-3×(-1)2024.
-
13、 与的和是一个单项式,则m+n=.
-
14、 的相反数是 , 倒数是 , 绝对值是.
-
15、用小棒摆图形,如图,第1个图用6根小棒,第2个图用10根小棒,第3个图用14根小棒,……,按这样的规律摆下去,第( )个图用146根小棒.
A、36 B、37 C、38 D、39 -
16、已知关于x的多项式化简后不含x2项,那么a的值是( )A、-3 B、3 C、-2 D、2
-
17、现有以下结论:①正有理数、负有理数和0统称为有理数;②若两个数的差是正数,则这两个数都是正数;③任意一个有理数都可以在数轴上找到一个点来表示;④若|a|=|b|,则a=b;⑤几个非零有理数相乘,若负因数的个数为奇数,则乘积为负数;⑥数轴上到原点的距离为3的点表示的数是3或-3.其中正确的有( )A、2个 B、3个 C、4个 D、5个
-
18、 2024年6月25日嫦娥六号顺利返回地球,带回大约2kg的月背样本,实现世界首次月背采样返回,标志着我国对月球背面的研究又进入了一个新的高度.已知月球到地球的平均距离约为384000千米,数据384000用科学记数法表示为( )A、384×103 B、38.4×104 C、3.84×105 D、
-
19、
(1)、如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)、如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)、拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状. -
20、在△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
(1)、若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)、若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?