• 1、已知两个多项式:A=2m2+3mn2m1B=m2+mn1
    (1)、化简:A+2B
    (2)、若(1)中式子的值与m的取值无关,求n的值.
  • 2、为了开展体育活动,学校要购置一批排球,每班配5个,学校另外留20个.
    (1)、设班级数为x,请问学校总共需要购置多少个排球?(用含x的代数式表示)
    (2)、当x=15时,求学校总共需要购置多少个排球?
  • 3、化简.

    2x3y+5x+4y                                             

    8a7b4a5b

  • 4、计算.

    15+23                                               

    7+5+4   

    48÷8+5×6                           

    7956+34×36

  • 5、在数轴上表示下列各数,并按照从小到大的顺序用“<”连接起来;

    +32121.512 ,        

  • 6、数轴上点A、B到原点的距离分别是1和3,则A、B两点间的距离是
  • 7、若x+7+y62=0 , 则x+y的值为
  • 8、已知代数式34xayb23x2y是同类项,则a+b的值为(  )
    A、5 B、4 C、3 D、2
  • 9、阅读:如图,已知数轴上有A,B,C三个点,它们表示的数分别是188 , 8.A到C的距离可以用AC表示,计算方法:C表示的数8,A表示的数18 , 8大于18 , 用8(18) . 用式子表示为:AC=8(18)=26

    根据阅读完成下列问题:

    (1)、填空:AB=          BC=          
    (2)、若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒4个单位长度和9个单位长度的速度向右运动,试探索:BCAB的值是否随着时间t的变化而改变?请说明理由;
    (3)、现有动点P,Q都从A点出发,点P以每秒1个单位长度的速度向右移动,当点P移动6秒时,点Q才从A点出发,并以每秒2个单位长度的速度向右移动.设点P移动的时间为t秒0t19 , 写出P,Q两点间的距离(用含t的代数式表示).
  • 10、定义:对任意一个两位数a , 如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“迥异数”,将一个“迥异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为f(a) . 例如:a=12 , 对调个位数字与十位数字得到新两位数21,新两位数与原两位数的和为21+12=33,和与11的商为33÷11=3,所以f(12)=3 . 根据以上定义,回答下列问题:

    (1)填空:①下列两位数:40,42,44中,“迥异数”为_______;②计算:f(23)=_______;

    (2)如果一个“迥异数”b的十位数字是k , 个位数字是2(k+1 , 且f(b)=11 , 请求出“迥异数”b

  • 11、先化简,再求值:

    3x2+2xy3x22xy10xy , 其中x=12y=1

  • 12、计算:23×4+1213÷112
  • 13、计算:1218+76
  • 14、用火柴按如图的方式搭六边形组成新的图形,图①搭1个六边形的图形需要6根火柴;图②搭2个六边形组成的图形需要11根火柴;图③搭3个六边形组成的图形需要16根火柴;…;按此规律,搭n个六边形组成的图形需要的火柴数是根.

  • 15、现规定一种运算“※”:ab=a+ab , 则123=
  • 16、已知a2b=1 , 那么代数式2a4b3的值是
  • 17、据媒体报道,我国最新研制的某款“察打一体”无人机的速度极快,经测试最高速度可达10300m/min , 这个数用科学记数法表示正确的是(     )
    A、10.3×103 B、1.03×105 C、1.03×104 D、10.3×104
  • 18、下列四个数中,最小的是( )
    A、0.6 B、15 C、1 D、2
  • 19、小明把自家的冬枣产品放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);

    星期

    与计划量的差值

    +4

    3

    5

    +14

    8

    +20

    6

    (1)、根据记录的数据可知销售量最多的一天比销售量最少的一天多销售______斤;
    (2)、本周实际销售总量是否达到了计划数量?试说明理由;
    (3)、若冬枣每斤按8元出售,每斤冬枣需要小明支付的平均运费是3元,那么小明本周销售冬枣实际共得多少元?
  • 20、已知多项式A=2x2+my12B=nx23y+6

    (1)若(m+2)2+|n3|=0 , 化简AB

    (2)若A+B的结果中不含有x2项以及y项,求m+n+mn的值.

1 2 3 4 5 下一页 跳转