-
1、 已知二次函数 的图象经过(-1,0)与(5,0)两点.若关于x 的方程 有两个根,其中一个根是6,则该方程的另一个根是.
-
2、如图,抛物线 经过(0,-3),(2,-3)两点,与x轴交于A,B两点(点A在点B 的左侧),P为抛物线上一点,直线AP 与y轴交于点 C,连接BP.
(1)、求抛物线的函数表达式;(2)、当 时,求点 P 的坐标;(3)、当点 P 在第四象限内时,直线BC 与抛物线交于点 D,连接AD.请判断 是否为定值?若是,请求出这个定值;若不是,请说明理由. -
3、问题情境:将矩形ABCD 绕点C顺时针旋转,当旋转到如图①所示的位置时,得到矩形A'B'CD',点A,B,D的对应点分别为点A',B',D',设直线AD与直线A'D'交于点 E.
(1)、 【猜想证明】猜想DE与D'E的数量关系,并证明;
(2)、 【问题探究】
如图②,在旋转的过程中,当点B'恰好落在矩形ABCD 的对角线 BD 上时,点A'恰好落在AD 的延长线上(即点A'与点 E 重合),连接A'C,求证:四边形.A'DBC是平行四边形;(3)、 【拓展延伸】
问题解决:
在矩形ABCD 绕点 C 顺时针旋转的过程中,设直线 CE 与直线.A'B'相交于点 F,若AB=5,BC=3,当A',B',D三点在同一条直线上时,求 的值. -
4、陶艺,是中国传统古老文化与现代艺术结合的艺术形式.为充分发挥学生创造力和想象力,打造出属于同学们的独特的陶艺作品,学校计划增设陶艺校本课程以丰富学生课后服务,为此准备了易塑性陶泥A与耐久性陶泥B.已知每件陶泥A的价格比每件陶泥B的价格少0.6元,且花费36元购买陶泥A 与花费48元购买陶泥B的件数相同.(1)、求陶泥A 与陶泥B的单价分别为多少元?(2)、该课程共有经费210元,根据课时内容,要求陶泥A的件数是陶泥B的2倍,求最多能买多少件陶泥B.
-
5、一个四位自然数M=abcd,若M满足 , A,B是连续的两个两位自然数,且A,B的十位数字相同,则称这个四位数M为“致广数”.例如:四位数 ∴3 080是“致广数”.按照这个规定,则最小的“致广数”是;将A 放在 B 的左边组成一个新的四位数N,设 当F(N),G(N)的值分别都为整数时,则满足条件的M是.
-
6、如图,在边长为3的正方形ABCD中,M为对角线BD 上的一点,连接AM 并延长交CD 于点 P.若PM=PC,则AM的长为.

-
7、 如图,四边形ABCD 是菱形, , 以点 C 为圆心画弧,分别与AB,AD 相切于点 E,F,与CB,CD 相交于点 G,H,则图中阴影部分的面积为.
-
8、如图,将一副直角三角尺的直角顶点 C 叠放在一起,其中 , 若∠DCE=α,则∠CFB=.

-
9、如图,在 中, , F是 BC 延长线上一点,以CF 为边作菱形CDEF,使菱形CDEF与 位于直线BC的同侧,且 连接BE,G是BE的中点,连接AG,DG.
(1)、 【尝试探究】如图①,当 时,延长DG交BC于点H,连接AH,AD,则AG与DG的数量关系是 , 位置关系是;
(2)、 【类比探究】如图②,当时,(1)中的结论是否仍然成立?若成立,请予以证明;若不成立,请说明理由;
(3)、 【拓展应用】如图③,当时,连接AD,若AD=2,CF=AC,请求出 的面积.
-
10、剪纸是四川省著名的传统手工艺品,同时也是我国著名的非物质文化遗产,某商家准备购进A,B两种样式的剪纸,若购进A种剪纸20幅,B种剪纸18幅,需花费630元;若购进A种剪纸12幅,B种剪纸22幅,需花费546元.(1)、分别求出A,B两种剪纸的单价;(2)、已知A,B两种类型的剪纸售价分别为30元/幅,25元/幅,根据市场销售情况,该商家决定购进A,B两种类型剪纸共100幅,购买预算不超过1620元,且购进的A种剪纸数量不少于 B 种剪纸数量的 当A,B两种剪纸全部销售完时,求销售的最大利润及相应的进货方案.
-
11、我们把二次函数 其中abc≠0)与 称为“相关函数”.例如:二次函数 的“相关函数”为 已知二次函数 的“相关函数”为 二次函数 的图象与x轴交于点M,N,二次函数( 的图象与x轴交于点 P,Q.二次函数 的图象的对称轴为直线;若MN=PQ,则二次函数 与 的图象的对称轴之间的距离为.
-
12、我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为“勾股高三角形”,两边交点为勾股顶点.如图,等腰 为“勾股高三角形”,其中AB=AC>BC,CD为AB边上的高,过点D 作BC的平行线交AC 于点 E.若CE=2,则线段 DE 的长度为.
-
13、如图,四边形ABCD为正方形,点E,F分别是边AB,AD 的中点,向正方形ABCD 内随机投掷飞镖,则飞镖击中阴影区域的概率是.

-
14、如图,是由若干个相同的小正方体搭成的一个几何体的主视图(左视图与主视图相同),则所需的小正方体的个数最多为个.

-
15、 若 可以用完全平方公式进行分解,则y的值可以为.(写出一个即可)
-
16、如图,在平面直角坐标系中,一次函数 的图象与反比例函数 的图象交于点A(m,3),B(6,-2).
(1)、求反比例函数的表达式及m的值;(2)、点C是y轴正半轴上一点,当 时,求 的值;(3)、动点M(x,y)在该反比例函数的图象上,若平面内一点 P 绕着M 点旋转 后得到点 Q,我们称Q是P关于M的“伴随点”.若P(4,t)关于M的“伴随点”为Q,由P,Q和坐标原点构成的三角形为等腰直角三角形,且P 为直角顶点,求t的值. -
17、如图,点D 是以AB为直径的⊙O 上一点,连接OD,过点 D 的切线交AB 的延长线于点 E,过点 B作 垂足为点 F,延长BF 交AD 的延长线于点 C.
(1)、求证:AB=BC;(2)、若⊙O的直径为5, 求线段 BF 和BE 的长. -
18、图①是一款可调节椅背的沙发椅,它可以减轻使用者的脊椎压力.图②是它的侧面示意图,椅背BC=70cm,将椅背角度从 调节到 (即 时,分别过点 C,D作 于点 E, 于点 F,求水平方向增加的距离EF长.(结果精确到1cm;参考数据:

-
19、为了让师生更规范地操作教室里的一体机设备,学校信息中心制作了“教室一体机设备培训”视频,并在视频课时间进行播放.结束后对他们进行了相关的知识测试.现从初一、初二年级各随机抽取了15名一体机管理员的成绩,得分用x表示,共分成4组:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100,对得分进行整理分析,给出了下面部分信息(注:极差为样本中最大数据与最小数据差):
初一年级一体机管理员的测试成绩在C组中的数据为:85,81,88;
初二年级一体机管理员的测试成绩:71,76,81,82,83,86,86,88,89,90,93,95,100,100,100.
年级
平均数
中位数
最高分
众数
极差
初一
88
a
98
98
32
初二
88
88
100
b
c

根据以上信息,回答下列问题:
(1)、a= , b= , c=.(2)、通过以上数据分析,你认为哪个年级的一体机管理员对一体机设备操作的知识掌握更好?并说明理由(写出一条理由即可);(3)、若初一、初二两个年级共有90名一体机管理员,请估计初一和初二两个年级此次测试成绩达到90分及以上的一体机管理员一共有多少人? -
20、(1)、计算:(2)、解不等式组: