-
1、计算:(1)、;(2)、 .
-
2、如图,已知正方形中, , , 垂直于 , 已知 , 则 .

-
3、赵爽弦图是中国古代数学家赵爽为证明勾股定理而设计的几何图形.该图由四个全等的直角三角形(直角边分别为a和b,斜边为c)围绕一个正方形拼成一个大正方形(如图).若图中大正方形的面积为13,小正方形的面积为1,则以下关于a和b的结论正确的是( )
A、 B、 C、 D、 -
4、下列四种说法正确的个数( )
(1)立方根是它本身的数是1;(2)平方根是它本身的数是0;(3)算术平方根是它本身的数是0;(4)倒数是它本身的数是1和 .
A、1个 B、2个 C、3个 D、4个 -
5、在实数 , , , , , (相邻两个1之间的2的个数逐渐加)中,无理数有( )A、1个 B、2个 C、3个 D、4个
-
6、众所周知:在数轴上,点A表示的数记为a,点B表示的数记为b,那么A、B两点间的距离为 .(1)、当 , 时,求A、B两点之间的距离;(2)、已知a与b的和恰好等于A、B两点间的距离,求的值;(3)、已知 , 设点C在数轴上表示的数为x.
①填空:当时,x满足的条件为______,
当时,x满足的条件为______;
②对于 , 求的最小值及其C点的位置.
-
7、生活中,我们比较熟悉的计数方式是“逢十进一”,这就是十进制.而在计算机领域,还有一种“逢八进一”的计数方式,叫做八进制.
八进制与我们熟悉的十进制对应关系如下表:
八进制
0
1
2
3
4
5
6
7
10
11
12
13
…
十进制
0
1
2
3
4
5
6
7
8
9
10
11
…
观察发现:八进制数10表示十进制中的8,即;同理,八进制数23表示十进制中的19,即 .
根据以上材料,解答下列问题:
(1)、填空:八进制数35代表十进制中的数是;(2)、已知一个八进制两位数,各位数字的和为8,若该八进制两位数转换成十进制数后,是一个小于40的偶数,求所有满足条件的八进制数;(3)、①求八进制数246转换为十进制数后除以7所得的余数;②对于所有各位数字之和为12的八进制三位数,它们的十进制值除以7所得的余数是否固定不变?如果是,请求出这个定值;如果不是,请说明理由.
-
8、如图①是某校操场实物图,图②是该校操场示意图,共有六条跑道,每条跑道由两条直跑道和两个半圆形的跑道组成,每两条跑道之间的距离是相等的,第一条跑道长为400米,且两端半圆的半径R为36米(取3)
(1)、求第一条跑道两端半圆形跑道的总长度;(2)、若每两条跑道之间的距离为a米,第六条跑道周长为b米,试用含a的代数式表示b;(3)、若每两条跑道之间的距离a为米,现学校要进行400米比赛,如果终点相同,则第一条跑道和第五条跑道的起跑线应相差多少米? -
9、如图,大正方形的边长为a,小正方形的边长为b.
(1)、请用字母a、b表示出图中阴影部分的面积;若 , , 阴影部分的面积是多少?(2)、有同学通过研究发现,图中三角形的面积只与a的值有关,而与b的值无关,你认为他的这个发现正确吗?写出你的理由. -
10、已知a、b互为相反数,c、d互为倒数,m的绝对值是2.求的值.
-
11、先化简,再求值: , 其中x,y满足
-
12、在数轴上表示下列有理数,并用“”连接下列各数.
, , 0, ,

-
13、计算(1)、(2)、
-
14、我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,它具有一定的规律性,从图中取一列数:1,3,6,10,…,分别记为 , , , , …,以此类推,则的值为: , 的值为 .

-
15、双减背景下,数学童老师在课后服务中带同学们做了一个有趣的游戏∶首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤∶
第一步,A同学拿出三张扑克牌给B同学;
第二步,C同学拿出四张扑克牌给B同学;
第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.
请你确定,最终B同学手中剩余的扑克牌的张数为( )
A、8 B、9 C、10 D、12 -
16、若关于x,y的多项式化简后不含二次项,则m的值为( )A、 B、 C、0 D、
-
17、已知 , , 且 , 则的值为( )A、4或8 B、或 C、4或 D、或8
-
18、下列结论中,正确的是( )A、单项式的系数是3,次数是3 B、是二次单项式 C、多项式是四次三项式 D、单项式的系数为 , 次数是4
-
19、下列计算正确的是( )A、 B、 C、 D、
-
20、2025年“十一”假期,文化和旅游行业势头强劲,经文化和旅游部数据中心测算,全国国内旅游出游合计亿人次,亿用科学记数法可表示为( )A、 B、 C、 D、