-
1、先阅读下列材料,再解答后面的问题.
一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).
如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).
(1)、计算以下各对数的值:log2 4= , log2 16= , log2 64= .(2)、观察(1)中的结果, 则log2 4、 log2 16、log2 64之间的关系是 .(3)、猜想:logaM+logaN= (a>0且a≠1,M>0,N>0),并根据幂的运算法则:am•an=am+n以及对数的含义证明你的猜想. -
2、如图中, , , , 求的度数.

-
3、观察下列各式:
;
;
;
;
……
(1)试写出一般情况下的结论.
(2)根据这一结果计算:1+2+…+ .
-
4、计算:
-
5、在中,平分 , , 垂足为D,过D作 , 交于E.若 , , 线段的长为 .

-
6、如图,在中, , 直线m,n分别是、的垂直平分线,m,n交于点P,连接 . 若 , 则的度数为 .

-
7、如图,直线l,m分别与的边平行, , 则的度数是 .

-
8、如果的乘积中不含二次项,那么的值为 .
-
9、如图,在中, . 分别以点 , 为圆心,大于长为半径画弧,交于点 , , 作直线分别交 , 于点 , , 连接 , . 若 , 则的度数为( )
A、 B、 C、 D、 -
10、如图,将纸片沿折叠,使点A落在点处,且平分 , 平分 , 若 , , 则的度数为( )
A、 B、 C、 D、 -
11、若 , 则的值是( )A、8 B、7 C、 D、
-
12、如图,已知为的直径,F为上一点,点C是劣弧的中点,过点作于点 , 延长交于点 , 连接 .
(1)、若 , 求的度数;(2)、求证:是的切线;(3)、是否存在常数 , 使得 , 若存在,求出的值,若不存在,请说明理由. -
13、已知一次函数与反比例函数的图像交于、两点.
(1)、求一次函数和反比例函数的表达式;(2)、求的面积;(3)、若点关于原点对称点为 , 在轴上求一点 , 使得周长最小,则点坐标为 . -
14、学习宪法,是青少年成长的“必修课”.某校为了解九年级学生对宪法的学习情况,随机选取了九年级部分学生进行了相关测评(满分100分,90分以上为非常优秀),根据他们的成绩x(单位:分),绘制出如下不完整的统计图表.

九年级部分学生测试成绩频数分布表
组别
测试成绩x(分)
频数
A
1
B
3
C
5
D
n
E
4
九年级部分学生测试成绩扇形统计图(如上右图)
(1)、 ______, ______;(2)、已知该校九年级共有1200名学生,估计该校九年级学生中对宪法的学习情况为非常优秀的学生人数;(3)、为积极促进学生对宪法的学习,学校计划从本次测试在90分以上的1位女同学和3位男同学中随机选择两位同学给全校同学分享学习宪法的心得与方法,请用列表或画树状图的方法,求选择的两位同学恰好是一男一女的概率. -
15、如图,三个顶点的坐标分别为 , , .
(1)、画出关于原点对称的 , 并写出点 , , 的坐标.(2)、求出的面积. -
16、解方程:(1)、(2)、
-
17、定义:已知 , 若点的对应点在的内部或边上,则称点为的“纵横叠入点”.在平面直角坐标系中,点 , , , 点是直线上的一点,若点为的“纵横叠入点”,且是等腰三角形,则点的坐标为 .

-
18、“轮动发石车”是我国古代的一种投石工具,在春秋战国时期被广泛应用,图1是陈列在展览馆的仿真模型.图2是模型驱动部分的示意图,其中 , 的半径分别是和 , 当顺时针转动2周时,上的点P随之旋转 , 则 .

-
19、如图,在中, , 将绕点A按逆时针方向旋转,得到 . 若点恰好落在边上,且 , 则 .

-
20、如图,在中,弦的长为 , 圆心到的垂线段长为 , 则半径的长为 .