相关试卷
- 高中数学人教新课标A版必修3 第一章 算法初步 1.3算法案例
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.3循环语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.1输入语句、输出语句和赋值语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.1算法与程序框图(包括1.1.1算法的概念,1.1.2程序框图与算法的基本逻辑结构)
- 高中数学人教新课标A版必修3 第三章 概率 3.3几何概型
- 高中数学人教新课标A版必修3 第三章 概率 3.2古典概型
- 高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质
- 高中数学人教新课标A版必修3 第三章 概率 3.1.1随机事件的概率,3.1.2概率的意义
- 高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)
- 高中数学人教新课标A版必修3 第二章 统计 2.2.2用样本的数字特征估计总体的数字特征
-
1、2023年第57届世界乒乓球锦标赛在南非德班拉开帷幕,参赛选手甲、乙进入了半决赛,半决赛采用五局三胜制,当选手甲、乙两位中有一位赢得三局比赛时,就由该选手晋级而比赛结束.每局比赛皆须分出胜负,且每局比赛的胜负不受之前比赛结果影响.假设甲在任一局赢球的概率为 , 比赛局数的期望值记为 , 则的最大值是 .
-
2、中国空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱.假设空间站要安排甲、乙、丙、丁4名航天员开展实验,每名航天员只能去一个舱,每个舱至少安排一个人,则甲被安排在天和核心舱的条件下,乙也被安排在天和核心舱的概率为 .
-
3、已知函数 , 其导函数为 , 且 , 记 , 则下列说法正确的是( )A、恒成立 B、函数的极小值为0 C、若函数在其定义域内有两个不同的零点,则实数的取值范围是 D、对任意的 , 都有
-
4、已知 , , , 则( )A、 B、 C、 D、
-
5、从编号为1,2,3,…,10,11的11个球中,取出5个球,使这5个球的编号之和为奇数,其取法总数为( )A、236 B、328 C、462 D、2640
-
6、已知随机变量X的分布列如下:
X
-1
0
1
P
设Y=2X+1,则Y的数学期望E(Y)的值是( )
A、- B、 C、 D、- -
7、设数列是集合且中的数从小到大排列而成,即 , , , , , …,现将各数按照上小下大、左小右大的原则排成如下三角形表:
(1)写出这个三角形的第四行和第五行的数;
(2)求;
(3)设是集合且中的数从小到大排列而成,已知 , 求的值.
-
8、已知常数在矩形ABCD中,AB=4,BC=4 , O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且 , P为GE与OF的交点(如图).(1)、试求P的一个坐标,并计算出P的轨迹方程.(2)、是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.
-
9、小杨上的高中食堂有3种套餐,小王第一次选择A,B,C三种套餐的概率相等,若某次选择A之后,下一次仍会在三种套餐以相等概率继续选择,若某次选择B套餐之后,下一次只会在B,C两种套餐中以相等概率去选择,在某次选择C套餐之后,以后只会选择C套餐,根据以上规则回答下列问题:(1)、试写出第n次选择时,小王选A套餐的概率表达式,并求出第3次选择B套餐的概率.(2)、试写出第n次选择时,小王选B套餐的概率表达式,并求出选A套餐的均值.
-
10、如图,在直三棱柱中,底面是等腰直角三角形, , 侧棱 , D、E分别是与的中点,点E在平面ABD上的射影是的重心.
(Ⅰ)求与平面ABD所成角的余弦值
(Ⅱ)求点到平面的距离
-
11、记锐角的内角A、B、C的对边分别为a,b,c,已知.(1)、求的值.(2)、若 , 求边上的高的取值范围.
-
12、已知设P:函数在R上单调递减.Q:不等式的解集为R,如果P和Q有且仅有一个正确,则的取值范围为.
-
13、展开式中的系数是
-
14、函数 , 向右平移3个单位得到 , 下列说法正确的是( )A、的极小值点为 B、当有两解时, C、若 , , 则 D、若 , 那么 , 且有且仅有一解
-
15、如图所示,在四个正方体中,是正方体的一条体对角线,点分别为其所在棱的中点,能得出平面的图形为( )A、
B、
C、
D、
-
16、我们知道一元二次方程可以变形为 , 展开后对应项易得到韦达定理,那么类比推理过程,在一个一元三次方程 , 则下列关于此一元三次方程的根的式子正确的是( )A、++=2 B、++= C、= D、++=7
-
17、已 知长方形的四个顶点.一质点从的中点沿与夹角为的方向射到上的点后,依次反射到上的点 (入射角等于反射角).设的坐标为.若 , 则的取值范围是( ).A、 B、 C、 D、
-
18、下列说法正确的个数为( )
①180的正因数有16个②以正方体为顶点的三棱锥有70个③+9能被7整除
④投一枚质地均匀的硬币十次,正面朝上频率在 的概率为
A、1个 B、2个 C、3个 D、4个 -
19、若方程的四个根组成一个首项为的等差数列,则( )A、1 B、 C、 D、
-
20、已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是( )A、 B、 C、 D、