相关试卷
- 高中数学人教新课标A版必修3 第一章 算法初步 1.3算法案例
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.3循环语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.1输入语句、输出语句和赋值语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.1算法与程序框图(包括1.1.1算法的概念,1.1.2程序框图与算法的基本逻辑结构)
- 高中数学人教新课标A版必修3 第三章 概率 3.3几何概型
- 高中数学人教新课标A版必修3 第三章 概率 3.2古典概型
- 高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质
- 高中数学人教新课标A版必修3 第三章 概率 3.1.1随机事件的概率,3.1.2概率的意义
- 高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)
- 高中数学人教新课标A版必修3 第二章 统计 2.2.2用样本的数字特征估计总体的数字特征
-
1、有甲、乙两袋,甲袋中有4个白球,1个红球;乙袋中有2个白球,2个红球.现从甲袋中任取2个球放入乙袋,再从乙袋中任取一球,则此球为红球的概率为 .
-
2、已知向量满足 , 则与的夹角为 .
-
3、已知是定义在上的增函数,且可导,为奇函数,记函数分别是的导函数,则( )A、 B、 C、 D、
-
4、已知为坐标原点,抛物线的焦点为 , 准线为 , 过的直线与交于两点,则( )A、过A作的垂线,垂足为 , 若 , 则 B、若直线BO与交于点 , 则直线AP平行于轴 C、以线段BF为直径的圆上的点到的最小距离为1 D、以线段AB为直径的圆截轴所得弦长的最小值为
-
5、函数的部分图象如图所示,则( )A、的图象关于直线对称 B、在上的值域为 C、在上单调递增 D、的图象关于原点对称
-
6、已知双曲线的左、右焦点分别为 , 过的直线与的右支交于两点,若 , 则的离心率为( )A、 B、 C、2 D、
-
7、已知函数在上存在单调递减区间,则的取值范围是( )A、 B、 C、 D、
-
8、已知圆台的上底面半径、下底面半径、母线长之比为1:2:3,高为4,则该圆台的体积为( )A、 B、 C、 D、
-
9、已知函数的值域为 , 则的取值范围是( )A、 B、 C、 D、
-
10、某校从高二年级随机抽取部分学生参加交通安全知识测试,所得成绩的频率分布直方图如图所示,则可估计该校高二年级学生的交通安全知识测试成绩的中位数为( )A、87.5 B、85 C、82.5 D、80
-
11、已知等差数列的前项和为 , 则( )A、40 B、45 C、50 D、55
-
12、若复数满足 , 则( )A、 B、 C、 D、
-
13、已知集合 , 若 , 则( )A、0 B、0或2 C、1或2 D、0或1
-
14、一个底面边长为的正四棱柱形状的容器内装有一些水(底面放置于桌面上),现将一个底面半径为的铁制实心圆锥放入该容器内,圆锥完全沉入水中且水未溢出,并使得水面上升了.若该容器的厚度忽略不计,则该圆锥的侧面积为( )A、 B、 C、 D、
-
15、已知椭圆的离心率为 , E的左顶点N到点的距离为 .(1)、求椭圆E的标准方程.(2)、过点M作斜率和为2的直线 , , 直线 , 分别与E交于A,B两点和C,D两点.
(i)若(点B在点A的下方)的面积为 , 求直线的方程;
(ii)设AB,CD的中点分别为P,Q,证明:直线PQ过定点.
-
16、已知数列的前n项和为 , 且 , .(1)、证明:数列是等比数列.(2)、设 , 求数列的前n项和 .(3)、设 , 证明: .
-
17、如图,在四棱锥中,平面平面 , , , 为的中点,平面.(1)、证明: .(2)、求三棱锥的外接球的表面积.(3)、若 , 求二面角的正弦值.
-
18、已知函数 , 函数的导函数为 .(1)、当时,求曲线的斜率为的切线方程;(2)、若函数的极小值大于0,求a的取值范围.
-
19、某公司组织户外拓展活动,为探究员工参与该活动的积极性与员工的性别是否有关,对公司员工进行了简单随机抽样,得到如下列联表:
参与户外拓展活动的积极性
性别
合计
女
男
积极参与
75
e
h
不积极参与
m
f
35
合计
100
g
200
(1)、求m,e,f,g,h;(2)、在公司员工中任选1人,记事件A为“选到的员工是男性”,事件B为“选到的员工积极参与户外拓展活动”,估计的值;(3)、根据小概率值的独立性检验,能否认为是否积极参与户外拓展活动与性别有关?附: ,
0.050
0.010
0.001
3.841
6.635
10.828
-
20、已知身高互不相同的6个人排成一排,记 , , …,是对应站位为1,2,…,6的各人的身高数据的一个排列,则对任一组和(),各组中的两个不等关系至少有一个成立的概率为 .