• 1、下列选项中正确的是(       )
    A、ac>bc , 则a>b B、a>bc>d , 则ac>bd C、a>b , 则1a<1b D、ac2>bc2 , 则a>b
  • 2、设函数fx=Asinωx+φA0ω0φπ2的部分图象如图所示,则f(0)=

    A、3 B、32 C、2 D、1
  • 3、已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=x23ex+2 , 则(     )
    A、f(0)=0 B、x<0时,f(x)=x23ex2 C、f(x)2当且仅当x3 D、x=1f(x)的极大值点
  • 4、在一个不透明的口袋中装有大小、形状完全相同的n个小球,将它们分别编号为1,2,3,,n . 每次从口袋中随机抽取一个小球,记录编号后放回,直至取遍所有小球后立刻停止摸球.记总的摸球次数为Xn , 其期望为EXn
    (1)、求PX2=4PX3=5
    (2)、求EX2
    (3)、证明:EXn>nlnn+1

    附:①若随机变量X的可能取值为1,2,3,,n, , 则EX=i=1+kPX=k=limn+i=1nkPX=k

    ②若随机变量X=i=1nξi , 则EX=i=1nEξi

  • 5、在棱长为1的正方体ABCDA1B1C1D1中,下列说法正确的有(     )
    A、A1C1//平面ACD1 B、B1D平面ACD1 C、D到平面ACD1的距离为33 D、AB与平面ACD1所成的角为30°
  • 6、九宫格的起源可以追溯到远古神话中的洛书,洛书上的图案正好对应着从1到9九个数字,并且纵向、横向、斜向三条线上的三个数字的和(这个和叫做幻和)都等于15,即现代数学中的三阶幻方.根据洛书记载:“以五居中,五方皆为阳数,四隅为阴数”,其意思为:九宫格中5位于居中位置,四个顶角为偶数,其余位置为奇数.如图所示,若随机填写一组幻和等于15的九宫格数据,记事件A=a+b9”,则PA的值为.

    a

    d

    f

    b

    5

    g

    c

    e

    h

  • 7、已知正数x,y满足2x+1+8y=1 , 则x+y的最小值是(       )
    A、17 B、16 C、15 D、14
  • 8、已知函数fx=x2+2ax+4x11xx>112,+上的减函数,则a的取值范围是(  )
    A、1,12 B、,1] C、1,12 D、,1]
  • 9、已知F1F2分别是双曲线x2a2y2b2=1a>0,b>0的左、右焦点,过F1的直线与圆x2+y2=a2相切且分别交双曲线的左、右两支于A、B两点,若|AB|=|BF2|,则双曲线的渐近线方程为
  • 10、记Sn为等比数列an的前n项和,若a3=14,S3=34 , 则公比q=
  • 11、如图,直线l:y=m(m>0)与函数f(x)=2sinωxπ3(ω>0)的图象依次交于A,B,C三点,若|BC|=2|AB||AC|=6 , 则(     )

    A、m=1 B、ω=π C、x=12是曲线y=f(x)的一条对称轴 D、曲线y=f(x)向右平移1个单位后关于原点对称
  • 12、设事件A,B为两个随机事件,PA0,PB0 , 且PA¯|B=PB|A , 则(       )
    A、PB|A¯=PB¯|A B、PB¯|A=PA|B C、PB|A¯=PA|B D、PA¯|B=PB¯|A¯
  • 13、如图,在平行六面体AC1中,EAB的中点,过B1,D1,E三点的截面D1B1EF把平行六面体分成两个部分,则左右两部分体积之比为(       ).

    A、3:4 B、5:7 C、4:7 D、7:17
  • 14、一批零件共有10个,其中有3个不合格.随机抽取3个零件进行检测,恰好有1件不合格的概率是(     )
    A、C32C71C103 B、C31C72C103 C、C31C102C103 D、C32C101C103
  • 15、在复平面内,向量AB对应的复数为1+3i , 向量AC对应的复数为2+i , 则向量BC对应的复数为(     )
    A、34i B、3+4i C、1+2i D、12i
  • 16、命题“x2,1x2xa0”为真命题的一个充分不必要条件是(     )
    A、a14 B、a0 C、a6 D、a8
  • 17、如图,在棱长均为2的平行六面体ABCDA1B1C1D1中,底面ABCD是正方形,且A1AB=A1AD=60° , 下列选项正确的是(       )

    A、BD1长为23 B、异面直线ACBD1所成角的余弦值为63 C、A1CB1D1 D、AA1BD
  • 18、不等式x4x12的解集是(     )
    A、{x2x1} B、{xx2} C、{x2x<1} D、{xx>1}
  • 19、如图,在平行六面体ABCDA1B1C1D1中,NBC的中点,设AA1=aAB=bAD=c , 则A1N等于(       )

    A、a+b+12c B、a+b+c C、ab+12c D、ab+12c
  • 20、把满足任意x,yR总有fx+y+fxy=2fxfy的函数称为和弦型函数.
    (1)、已知fx为和弦型函数且f1=54 , 求f0,f2的值;
    (2)、在(1)的条件下,定义数列:an=2fn+1fnnN+ , 求log2a13+log2a23+log2a20243的值;
    (3)、若gx为和弦型函数且对任意非零实数t , 总有gt>1 . 设有理数x1,x2满足x2>x1 , 判断gx2gx1的大小关系,并给出证明.
上一页 77 78 79 80 81 下一页 跳转