相关试卷
- 高中数学人教新课标A版必修3 第一章 算法初步 1.3算法案例
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.3循环语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.1输入语句、输出语句和赋值语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.1算法与程序框图(包括1.1.1算法的概念,1.1.2程序框图与算法的基本逻辑结构)
- 高中数学人教新课标A版必修3 第三章 概率 3.3几何概型
- 高中数学人教新课标A版必修3 第三章 概率 3.2古典概型
- 高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质
- 高中数学人教新课标A版必修3 第三章 概率 3.1.1随机事件的概率,3.1.2概率的意义
- 高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)
- 高中数学人教新课标A版必修3 第二章 统计 2.2.2用样本的数字特征估计总体的数字特征
-
1、若 , 则 .
-
2、若曲线的一个对称中心为 , 则的最小值为 .
-
3、已知 , 下列说法正确的是( )A、若 , 则 B、若 , 则 C、 D、
-
4、牛奶保鲜时间因储藏温度的不同而不同.假定保鲜时间y(h)与储藏温度x()关系为为常量).若牛奶在0的冰箱中,保鲜时间约是100h,在5的冰箱中,保鲜时间约是80h,那么在10的冰箱中保鲜时间约是( )A、49h B、56h C、64h D、76h
-
5、已知函数 , 若 , 则的取值范围是( )A、 B、 C、 D、
-
6、已知函数的部分图象如图所示,则的值为( )
A、 B、2 C、 D、 -
7、已知圆 , 直线过点(1)、当直线与圆相切时,求直线的方程;(2)、线段的端点在圆上运动,求线段的中点的轨迹方程.
-
8、如图,在四棱锥中,底面是直角梯形, , , , , 平面 , .
(1)、求证:平面;(2)、求二面角的正弦值. -
9、已知非零向量 , 满足 , 则与的夹角为
-
10、如图,“蘑菇”形状的几何体是由半个球体和一个圆柱体组成,球的半径为2,圆柱的底面半径为1,高为3,则该几何体的表面积为 .

-
11、如图,四边形的斜二测画法的直观图为等腰梯形 , 已知 , , 则下列说法正确的是( )
A、 B、 C、四边形的面积为 D、四边形的周长为 -
12、若复数z满足 , 则z在复平面内对应的点在( )A、第一象限 B、第二象限 C、第三象限 D、第四象限
-
13、若复数z满足 , 则z的虚部为( )A、 B、 C、 D、
-
14、设正四面体的棱长为2,是的中点,则的值为( )A、 B、 C、 D、1
-
15、直线的倾斜角的取值范围是( )A、 B、 C、 D、
-
16、如图,在四棱锥中,底面为直角梯形,为等边三角形, , , .
(1)、求证:;(2)、若四棱锥的体积为 , 求平面与平面的夹角正弦值. -
17、在三棱锥中,若 , , , 则( )A、 B、1 C、 D、0
-
18、已知集合(1)、若 , 求实数的取值范围;(2)、设命题 , 命题 , 若是成立的必要不充分条件,求实数的取值范围.
-
19、命题“ , ”的否定是( )A、 , B、 , C、 , D、 ,
-
20、定义域为的函数满足条件:
① , , 恒有;
②;
③ ,
则不等式的解集是.