相关试卷
- 高中数学人教新课标A版必修3 第一章 算法初步 1.3算法案例
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.3循环语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.1输入语句、输出语句和赋值语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.1算法与程序框图(包括1.1.1算法的概念,1.1.2程序框图与算法的基本逻辑结构)
- 高中数学人教新课标A版必修3 第三章 概率 3.3几何概型
- 高中数学人教新课标A版必修3 第三章 概率 3.2古典概型
- 高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质
- 高中数学人教新课标A版必修3 第三章 概率 3.1.1随机事件的概率,3.1.2概率的意义
- 高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)
- 高中数学人教新课标A版必修3 第二章 统计 2.2.2用样本的数字特征估计总体的数字特征
-
1、已知向量 , , 定义新运算:.若函数 , 则称为向量 , 的点积函数.例如:向量 , , 则向量 , 的点积函数.(1)、若向量 , ( , ),且向量 , 的点积函数 , 求的值;(2)、若向量 , , 求向量 , 的点积函数的值域;(3)、若向量 , 的点积函数为 , 且存在 , 使得成立,求的取值范围.
-
2、已知函数 , , 且的解集为
(1)求的值;
(2)若 , 且 , 求证
-
3、(1)已知 , 求的最大值.
(2)已知 , , 且 , 求的最大值.
-
4、已知集合 , 将与(其中 , )的乘积放入如图的方格中,则方格中全部数之和的最大值为.
-
5、一个圆锥恰有三条母线两两夹角为 , 若该圆锥的侧面积为 , 则该圆锥的体积为.
-
6、函数(),若在上恒成立,则的取值范围是.
-
7、双曲线的一条渐近线的斜率为 , 若 , 则的值可能为( )A、 B、 C、2 D、
-
8、已知 , , 且 , 则的最小值为( )A、9 B、8 C、7 D、6
-
9、已知函数有两个极值点,则实数a的取值范围是( )A、 B、 C、 D、
-
10、下列选项中正确的是( )A、若 , 则 B、若 , , 则 C、若 , 则 D、若 , 则
-
11、设函数的部分图象如图所示,则f(0)=
A、 B、 C、 D、1 -
12、在一个不透明的口袋中装有大小、形状完全相同的n个小球,将它们分别编号为 . 每次从口袋中随机抽取一个小球,记录编号后放回,直至取遍所有小球后立刻停止摸球.记总的摸球次数为 , 其期望为 .(1)、求与;(2)、求;(3)、证明: .
附:①若随机变量的可能取值为 , 则
②若随机变量 , 则 .
-
13、在棱长为1的正方体中,下列说法正确的有( )A、平面 B、平面 C、点到平面的距离为 D、与平面所成的角为
-
14、九宫格的起源可以追溯到远古神话中的洛书,洛书上的图案正好对应着从1到9九个数字,并且纵向、横向、斜向三条线上的三个数字的和(这个和叫做幻和)都等于15,即现代数学中的三阶幻方.根据洛书记载:“以五居中,五方皆为阳数,四隅为阴数”,其意思为:九宫格中5位于居中位置,四个顶角为偶数,其余位置为奇数.如图所示,若随机填写一组幻和等于15的九宫格数据,记事件”,则的值为.
5
-
15、已知 , 分别是双曲线的左、右焦点,过的直线与圆相切且分别交双曲线的左、右两支于A、B两点,若|AB|=|BF2|,则双曲线的渐近线方程为 .
-
16、记为等比数列的前项和,若 , 则公比 .
-
17、如图,直线与函数的图象依次交于A,B,C三点,若 , , 则( )
A、 B、 C、是曲线的一条对称轴 D、曲线向右平移1个单位后关于原点对称 -
18、设事件为两个随机事件, , 且 , 则( )A、 B、 C、 D、
-
19、如图,在平行六面体中,是的中点,过三点的截面把平行六面体分成两个部分,则左右两部分体积之比为( ).

A、 B、 C、 D、 -
20、一批零件共有10个,其中有3个不合格.随机抽取3个零件进行检测,恰好有1件不合格的概率是( )A、 B、 C、 D、