相关试卷
- 高中数学人教新课标A版必修3 第一章 算法初步 1.3算法案例
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.3循环语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.1输入语句、输出语句和赋值语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.1算法与程序框图(包括1.1.1算法的概念,1.1.2程序框图与算法的基本逻辑结构)
- 高中数学人教新课标A版必修3 第三章 概率 3.3几何概型
- 高中数学人教新课标A版必修3 第三章 概率 3.2古典概型
- 高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质
- 高中数学人教新课标A版必修3 第三章 概率 3.1.1随机事件的概率,3.1.2概率的意义
- 高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)
- 高中数学人教新课标A版必修3 第二章 统计 2.2.2用样本的数字特征估计总体的数字特征
-
1、根据下列条件,求二次函数的解析式.(1)、图象经过点 , , ;(2)、当时,函数有最小值5,且经过点.
-
2、已知全集 , 集合 , .(1)、求 , ;(2)、求:
-
3、若对任意 , 均有 , 则实数的取值范围为 .
-
4、若 , , 并有以下7个关系式:
①;②;③;④;⑤;⑥;⑦
其中正确的有(填序号).
-
5、已知集合 , , 若 , 且中恰好有两个整数解,则的取值范围是( )A、 B、 C、 D、
-
6、设 , 则“”是“”的( )A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分也不必要条件
-
7、若 , 则的最小值为( )A、4 B、5 C、6 D、8
-
8、下列关系中,正确的是( )A、 B、 C、 D、
-
9、如图.在四棱锥中,四边形是直角梯形. , 且为中点.
(1)、证明:平面;(2)、在线段上是否存在点 , 使得平面与平面夹角的余弦值为?若存在,求出点的位置;若不存在,请说明理由. -
10、在四棱锥中,侧面平面 , 四边形为直角梯形, , , , 为等边三角形,点 , 分别为的中点.
(1)、证明:平面;(2)、求平面与平面所成角的余弦值;(3)、点为线段上的动点,求直线与平面所成角的正弦值的取值范围. -
11、已知在平面直角坐标系中, , 点满足 , 记点的轨迹为曲线.(1)、求的方程;(2)、若经过点的直线与相交于点 , 且 , 求直线的方程;(3)、已知.若直线经过点且与相交于两点,线段的中点为与的交点为 , 证明:为定值,并求出该定值.
-
12、甲、乙两名射击运动员在进行射击训练,已知甲命中10环,9环,8环的概率分别是 , 乙命中10环,9环,8环的概率分别是 , 任意两次射击相互独立.现在甲、乙两人进行射击比赛,每一轮比赛两人各射击一次,环数高于对方为胜,环数低于对方为负,环数相等为平局,规定连续胜利两轮的选手为最终的胜者,比赛结束,则(1)、求在每轮比赛中甲获胜的概率;(2)、求恰好进行3轮射击后,比赛结束的概率.
-
13、如图,在四棱锥中,底面是边长为2的正方形,底面 , 为的中点,为的中点,解答以下问题:
(1)、证明:直线平面;(2)、求直线与平面的距离. -
14、在平行六面体中, , 则
-
15、直线过点且在两坐标轴的截距相等,则直线的方程为
-
16、若以连续两次掷均匀骰子得到的点数 , 作为点的横、纵坐标,则点在直线上的概率为
-
17、如图所示,在棱长为2的正方体中, , 分别为棱 , 的中点,则下列结论正确的是( )
A、直线与平面所成角的正弦值为 B、点到平面的距离为2 C、直线与是异面直线 D、平面截正方体所得的截面面积为 -
18、下列说法正确的是( )A、直线必过定点 B、直线在轴上的截距为 C、经过点且平行于过和点两点的直线方程为 D、已知点 , 则线段的中垂线方程为
-
19、在四棱锥中, , , , 则这个四棱锥的高等于( )A、26 B、13 C、2 D、1
-
20、点在圆上运动,它与点所连线段中点为 , 则点轨迹方程为( )A、 B、 C、 D、