相关试卷
- 高中数学人教新课标A版必修3 第一章 算法初步 1.3算法案例
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.3循环语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.1输入语句、输出语句和赋值语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.1算法与程序框图(包括1.1.1算法的概念,1.1.2程序框图与算法的基本逻辑结构)
- 高中数学人教新课标A版必修3 第三章 概率 3.3几何概型
- 高中数学人教新课标A版必修3 第三章 概率 3.2古典概型
- 高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质
- 高中数学人教新课标A版必修3 第三章 概率 3.1.1随机事件的概率,3.1.2概率的意义
- 高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)
- 高中数学人教新课标A版必修3 第二章 统计 2.2.2用样本的数字特征估计总体的数字特征
-
1、为了加强“疫情防控”,某校决定在学校门口借助一侧原有墙体,建造一间墙高为4米,底面积为24平方米,且背面靠墙的长方体形状的校园应急室,由于此应急室的后背靠墙,无需建造费用,公司甲给出的报价为:应急室正面的报价为每平方米400元,左右两侧报价为每平方米300元,屋顶和地面报价共计9600元,设应急室的左右两侧的长度均为x米(),公司甲的整体报价为y元.(1)、试求y关于x的函数解析式;(2)、现有公司乙也要参与此应急室建造的竞标,其给出的整体报价为元,若采用最低价中标规则,哪家公司能竞标成功?请说明理由.
-
2、已知函数 , .(1)、当时,求时的的值;(2)、解关于的不等式;(3)、若对于任意的 , 恒成立,求的取值范围.
-
3、根据题意,求解下列问题:(1)、已知 , , 且满足 , 求的最小值;(2)、已知 , 求最小值;(3)、已知 , , , 求的最小值并求出此时a,b的值.
-
4、已知函数 , 且 , .(1)、求a和b的值;(2)、判断在上的单调性,并根据定义证明.
-
5、设 , 已知集合 , .(1)、①当时,求;
②当时,求实数m的范围;
(2)、设p:;q: , 若p是q的必要不充分条件,求实数m的范围. -
6、若关于的不等式在上有解,则实数的取值范围为.
-
7、已知函数 , 则.
-
8、下列命题正确的是( )A、和是同一函数 B、命题: , ;则它的否定是: , , 或 C、“”是“关于的不等式解集为”的充分不必要条件 D、若 , , 且 , 那么的最小值为
-
9、关于基本不等式,下列选项正确的有( )A、函数的最小值为2 B、若 , 则最小值为2 C、若 , 则的最大值为 D、取得最大值为2
-
10、若关于的不等式对于一切恒成立,则实数的取值范围是( ).A、 B、 C、 D、
-
11、若 , , 则的取值范围是( )A、 B、 C、 D、
-
12、不等式的解集为( )A、 B、 C、{或} D、或
-
13、命题“ , ”的否定是( )A、 , B、 , C、 , D、 ,
-
14、已知椭圆的左焦点 , 左、右顶点分别为 , 上顶点为.(1)、求椭圆的方程;(2)、是否存在以原点为圆心的圆,使得该圆的任意一条切线与椭圆恒有两个交点 , 且?若存在,求圆的方程以及的取值范围,若不存在,请说明理由.
-
15、已知平行六面体的底面是边长为的正方形,且 , .
(1)、证明:;(2)、求异面直线与夹角的余弦值. -
16、如图,在直角坐标系中,已知 , , 从点射出的光线经直线反射到轴上,再经轴反射后又回到点 , 则光线所经过的路程的为.
-
17、直线l过点且在两坐标轴上的截距相等,则直线l的方程为 .
-
18、两条平行直线与之间的距离是 .
-
19、下列说法正确的是( )A、若直线的一个方向向量为 , 则该直线的斜率为 B、“”是“直线与直线互相垂直”的充要条件 C、当点到直线的距离最大时,m的值为 D、已知直线l过定点且与以为端点的线段有交点,则直线l的斜率k的取值范围是
-
20、已知椭圆E的焦点为 , 过的直线与椭圆E交于A,B两点若 , 则椭圆E的离心率为( )A、 B、 C、 D、