相关试卷
- 高中数学人教新课标A版必修3 第一章 算法初步 1.3算法案例
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.3循环语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.1输入语句、输出语句和赋值语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.1算法与程序框图(包括1.1.1算法的概念,1.1.2程序框图与算法的基本逻辑结构)
- 高中数学人教新课标A版必修3 第三章 概率 3.3几何概型
- 高中数学人教新课标A版必修3 第三章 概率 3.2古典概型
- 高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质
- 高中数学人教新课标A版必修3 第三章 概率 3.1.1随机事件的概率,3.1.2概率的意义
- 高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)
- 高中数学人教新课标A版必修3 第二章 统计 2.2.2用样本的数字特征估计总体的数字特征
-
1、已知抛物线 的焦点为 , 过点的直线 与抛物线 交于两点,若 , 则直线 的斜率为.
-
2、在研究全概率公式时,我们将对一个事件发生的情况的研究转化为对发生该情况的几个先决条件进行分析,这是一种重要的递推思想.在如图所示的蜂窝形正六边形地图中,左上角与右下角的“○”分别代表起点与终点,蜂窝格中的实心圆点“●”代表地雷,有一个扫雷机器人在起点处接收到指令移动至终点,每一次移动只能按照箭头所示的三个方向运动,若移动到地雷区,则会立即将地雷排除.记移动过程中,该机器人可以排除的地雷数量最多为 , 现在在图中增加两枚地雷(用叉号“×”表示),则以下方法可以使增加且只增加的是:( ).
A、
B、
C、
D、
-
3、在平面直角坐标系xOy中,双曲线的左、右焦点分别为 , , 左、右顶点分别为 , 已知点 , 直线l交Γ于P、Q两点(异于),当直线l过点A且与x轴垂直时,的重心G在以为直径的圆O上.下列结论正确的是( )A、点到Γ的渐近线的距离为2 B、直线 , 的斜率之积为2 C、若直线l过点 , 当时,这样的直线l只有2条 D、若直线l过点A,且 , 则
-
4、若 , , , 则( )A、 B、 C、· D、
-
5、已知是圆上的动点,以点为圆心,为半径作圆 , 设圆与圆交于A,B两点,则下列点中,直线一定不经过( )A、 B、 C、 D、
-
6、将顶点在原点,始边为轴非负半轴的锐角的终边绕原点逆时针转过后,交单位圆于点 , 那么的值为( )A、 B、 C、 D、
-
7、集合 , 集合 , 则集合中元素的个数为( )A、2 B、3 C、4 D、5
-
8、已知函数 .(1)、讨论的单调性;(2)、若在内的最大值为2,求的值;(3)、若 , 求的取值范围.
-
9、已知椭圆的两个焦点 , 过点作垂直于长轴的直线交椭圆于点 , 此时与椭圆长轴的两端点形成的四边形的面积为2.(1)、求椭圆的方程;(2)、过点作两条互相垂直的直线与椭圆分别交于点及 , 求四边形的面积的最小值.
-
10、已知数列是首项为2的正项等比数列.又构成等差数列.(1)、求数列的通项公式;(2)、若数列满足.令.求数列的前项和.
-
11、若 , 则 .
-
12、若曲线的一个对称中心为 , 则的最小值为 .
-
13、已知 , 下列说法正确的是( )A、若 , 则 B、若 , 则 C、 D、
-
14、牛奶保鲜时间因储藏温度的不同而不同.假定保鲜时间y(h)与储藏温度x()关系为为常量).若牛奶在0的冰箱中,保鲜时间约是100h,在5的冰箱中,保鲜时间约是80h,那么在10的冰箱中保鲜时间约是( )A、49h B、56h C、64h D、76h
-
15、已知函数 , 若 , 则的取值范围是( )A、 B、 C、 D、
-
16、已知函数的部分图象如图所示,则的值为( )
A、 B、2 C、 D、 -
17、已知圆 , 直线过点(1)、当直线与圆相切时,求直线的方程;(2)、线段的端点在圆上运动,求线段的中点的轨迹方程.
-
18、如图,在四棱锥中,底面是直角梯形, , , , , 平面 , .
(1)、求证:平面;(2)、求二面角的正弦值. -
19、已知非零向量 , 满足 , 则与的夹角为
-
20、如图,“蘑菇”形状的几何体是由半个球体和一个圆柱体组成,球的半径为2,圆柱的底面半径为1,高为3,则该几何体的表面积为 .
