相关试卷

  • 1、在“乡村振兴”行动中,某村办企业以AB两种农作物为原料开发了一种有机产品.A原料的单价是B原料单价的1.5倍,若收购100kgA原料会比收购100kgB原料多花费150元.生产该产品每盒需要A原料2kgB原料4kg , 每盒还需其他成本9元,市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
    (1)、求每盒产品的成本(成本=原料费+其他成本);
    (2)、设每盒产品的售价是x元(x>60x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);
    (3)、求每盒产品的售价为多少元时,每天的利润最大,则最大利润是多少元?
  • 2、如图,二次函数y1=x2+bx+c的图象与x轴交于A、B 两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,﹣3),一次函数y2=mx+n的图象过点A、C.

    (1)求二次函数的解析式;

    (2)求二次函数的图象与x轴的另一个交点A的坐标;

    (3)根据图象写出y2<y1时,x的取值范围.

  • 3、“一人一盔安全守规,一人一戴平安常在”,如表是某厂质检部门对该厂生产的一批头盔质量检测的情况.

    抽取的头盔数

    500

    1000

    1500

    2000

    3000

    4000

    合格品数

    491

    986

    1470

    1964

    2949

    3932

    合格品频率

    0.982

    0.986

    0.980

    a

    b

    0.983

    (1)、求出表中a=_______,b=_______;
    (2)、从这批头盔中任意抽取一顶是合格品的概率的估计值是_____(精确到0.01);
    (3)、如果要出厂49000顶合格的头盔,则该厂估计要生产多少顶头盔?
  • 4、已知线段ab满足a:b=3:2 , 且a+2b=21
    (1)、求ab的值;
    (2)、若线段x是线段ab的比例中项,求x的值.
  • 5、如图,在ABC中,ABC=90°BDAC , 点EBD的中点,连接AE并延长交BC于点F , 且有AF=CF , 过F点作FHAC于点H . 若FH=3 , 则BC的长为

  • 6、如图,在ABC中,ACB=90° , 点D在线段CA上,CD=2AD=7BDC=3BAC , 则BC=(       ).

    A、837 B、937 C、935 D、835
  • 7、当ab<0 , 函数y=ax2y=ax+b在同一平面直角坐标系中的图象大致是(       )
    A、 B、 C、 D、
  • 8、已知A3,y1B0,y2C2,y3是抛物线y=x+22+m上的三点,则y1y2y3的大小关系为(       )
    A、y1>y3>y2 B、y3>y1>y2 C、y3>y2>y1 D、y1>y2>y3
  • 9、如图,ABCD , AC,BD相交于点E,AE=1EC=2CD=3 , 则AB的长为(       )

    A、32 B、52 C、1 D、2
  • 10、请阅读下面解方程x2+122x2+13=0的过程.

    解:设x2+1=y , 则原方程可变形为y22y3=0

    解得y1=3y2=1

    y=3时,x2+1=3x=±2

    y=1时,x2+1=1x2=2 , 此方程无实数解.

    ∴原方程的解为x1=2x2=2

    我们将上述解方程的方法叫做换元法.

    请用换元法解方程:xx122xx115=0

  • 11、2025424日,神舟二十号载人飞船在酒泉卫星发射中心发射成功.某火箭航模店看准商机,购进了“神舟”火箭模型,已知火箭模型每件的进货价为30元,经市场调研发现,当该火箭模型的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.设火箭模型的销售单价增加x元.
    (1)、当天火箭模型的销售量为_____件;
    (2)、求当该火箭模型的销售单价为多少元时,该产品当天的销售利润是3610元.
  • 12、如图,在RtABC中,B=90°,BC=4,AB=8

    (1)、利用尺规作AC的垂直平分线DE , 垂足为E , 交AB于点D;(保留作图痕迹,不写作法)
    (2)、求DE的长度.
  • 13、2025年11月,深圳将迎来第十五届全国运动会,简称“十五运会”.十五运会是粤港澳三地承办的我国规模最大、水平最高、影响最广的综合性运动会.若某校将承担本次运动会的志愿服务工作,其服务项目有:“后勤保障”“礼仪指引”“裁判辅助”“检录服务”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:

    (1)、本次调查的师生共有___________人,请补全条形统计图;
    (2)、在扇形统计图中,“裁判辅助”对应的圆心角是___________;
    (3)、本次志愿服务需要后勤保障人员300人,已知该校共有2400名师生,有60%的师生参加志愿者服务,请预估后勤保障人员是否足够?
  • 14、解下列一元二次方程:
    (1)、x22x4=0
    (2)、xx5=2x10
  • 15、已知关于x的一元二次方程x2+2k+3x+k2=0的两个不相等的实数根x1x2 , 以,已知x1x2在满足1x1+1x2=1 , 则k的值为
  • 16、如图,菱形ABCD的对角线AC=6,BD=8 , 则菱形ABCD的周长为

  • 17、新知定义:如果从一个平行四边形的一个顶点向不过该顶点的对角线作垂线,垂线交平行四边形的边于另一点,且该点为所在边的三等分点,那么这个平行四边形叫做“垂对三等分平行四边形”,垂足叫做“垂三等分点”.

    (1)、理解应用

    如图1,在▱ABCD中,AE⊥BD于点P,交CD于点E,若E为CD的三等分点,则▱ABCD是垂对三等分平行四边形,P是垂三等分点.若DE=13CD,DE=7,BP=6,则DP =;AD=.

    (2)、问题探究

    如图2,在垂对三等分平行四边形ABCD中,P是垂三等分点,且满足AE=13AB.若CE=CB,试猜想BD与BC的数量关系,并说明理由.

    (3)、拓展延伸

    如图3,已知四边形ABCD是矩形,过点A作AE⊥BD于点P,交CD于点E,AB=6,当四边形ABCD是垂对三等分平行四边形时,直接写出AD的长度.

  • 18、如图1左图所示是《天工开物》中记载的三千多年前中国古人利用桔槔在井上汲水的情境(杠杆原理:阻力×阻力臂=动力×动力臂,即 FA×L1=FB×L2).受桔槔的启发,小轩组装了如图1右图所示的装置,其中,杠杆可绕支点O在竖直平面内转动,支点O距左端 L1=1m,距右端 L2=0.4m,在杠杆左端悬挂重力为80N的物体A.

    (1)、若在杠杆右端挂重物B,杠杆在水平位置平衡时,重物B所受拉力为N;
    (2)、为了让装置有更多的使用空间,小轩准备调整装置,当重物B的质量变化时,L2的长度随之变化.设重物B的重量为xN,L2的长度为ycm.则:

    ①y关于x的函数解析式是   ▲   

    ②根据下表,填空:

    x/N

    10

    20

    30

    40

    50

    y/cm

    8

    a

    83

    2

    b

    a=   ▲    , b=   ▲   

    ③在图2的直角坐标系中画出该函数的图象;

    (3)、在(2)的条件下,若点A的坐标为(20,0),点B的坐标为(0,2),在函数的图象上存在点C使得S△ABC=40,请直接写出所有满足条件的点C的坐标.
  • 19、如图所示,在△ABC中,AB=AC,AD是中线,AN是△ABC的外角∠CAM的平分线,CE⊥AN,垂足为E.

    (1)、求证:四边形ADCE是矩形;
    (2)、连接BE,若AC=10,BC=12,求BE的长
  • 20、综合与实践:在手工制作课上,老师提供了如图1所示的矩形硬纸板ABCD(规格:AB=40cm,BC=100cm),要求大家利用它制作一个有盖的长方体收纳盒.小明按照图2裁剪,恰好得到收纳盒的展开图,并利用该展开图折成一个有盖的长方体收纳盒,PQ和MN两边恰好重合且无重叠部分,如图3所示.

    (1)、若收纳盒高是10cm,则该收纳盒底面的边EF=cm,EH=cm;
    (2)、如图3,若收纳盒的底面积是350cm2 , 如图4,一个玩具机械狗的实物图和尺寸大小,请通过计算判断玩具机械狗能否完全放入该收纳盒?(不考虑倾斜放入且要盖上盖子)
上一页 19 20 21 22 23 下一页 跳转