相关试卷
-
1、如图所示方格纸中,每个小正方形的边长均为1,点 , 点 , 点在小正方形的顶点上.(1)、画出中边上的高;(2)、画出中边上的中线;(3)、直接写出的面积为________.
-
2、在平面直角坐标系中的位置如图所示.将向右平移5个单位长度,再向下平移4个单位长度得到 , 内部有一点平移后的对应点为 . (图中每个小方格边长均为1个单位长度).(1)、在图中画出平移后的;(2)、直接写出下列各点的坐标:______,______;
-
3、如图,在平面直角坐标系中,直线和相交于点(2,-1),则关于、的方程组的解为 .
-
4、不等式的解集是 .
-
5、已知a、b、c分别是的三边长,a、b满足 , c为奇数,则的周长为 .
-
6、甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离A城的距离与甲车行驶的时间之间的函数关系如图所示.下列结论:①A,B两城相距;②乙车比甲车晚出发 , 却早到;③甲车的速度为;④乙车的速度为 . 其中正确的有( )A、1个 B、2个 C、3个 D、4个
-
7、棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是局象棋残局,若在中国象棋盘上建立平面直角坐标系,使表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示“炮”的点的坐标为( )A、(1,3) B、(3,1) C、(2,3) D、(1,2)
-
8、函数中自变量的取值范围是( )A、 B、 C、 D、
-
9、点P在第二象限内,且P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )A、 B、 C、 D、
-
10、在平面直角坐标系中,下列各点位于第四象限的是( )A、 B、 C、 D、
-
11、如图,在中,是高, , 是角平分线,它们相交于点O, , . 求和的度数.
-
12、某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.
(1)初三(1)班接受调查的同学共有多少名;
(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;
(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.
-
13、如图,锐角中, , AD是BC边上的高, , , 则 .
-
14、如图,在中,点D、E在边上,连接并延长交延长线于点G.过D作于F.若 , , , , , 则的长度为( )A、 B、 C、9 D、
-
15、如图,在四边形ABCD中,∠DAB=∠B=60°,AD⊥CD,AC平分∠DAB,E为AB边的中点,连接DE交AC于F.若CD=1,则线段AF的长度为( )A、 B、 C、1 D、
-
16、若是一元二次方程的一个根,则m的值为( )A、4 B、 C、6 D、
-
17、一元二次方程的二次项系数和常数项分别是( )A、3, B、 , 3 C、3,1 D、3,
-
18、在平面中,下列说法正确的是( )A、四边相等的四边形是菱形 B、对角线互相平分的四边形是菱形 C、四个角相等的四边形是正方形 D、对角线互相垂直的四边形是平行四边形
-
19、如图,矩形的对角线相交于点 , 且 , 点为上一点, , 连接 , 则的长为( )A、 B、 C、或 D、
-
20、综合探究
【问题背景】在解决“半角模型”问题时,旋转是一种常用方法.如图①,在四边形中, , , , , 分别是 , 上的点,且 , 连接 , 探究线段 , , 之间的数量关系.
【探究发现】
(1)小明同学的方法是将绕点逆时针旋转至的位置,使得与重合,然后证明 , 从而得出、、之间的数量关系:____________;
【拓展延伸】
(2)如图②,在正方形中,点 , 分别在边 , 上,且 , 连接 , (1)中的结论是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;
【尝试应用】
(3)在(2)的条件下,若 , , 求正方形的边长.