-
1、【背景介绍】勾股定理是几何学中的明珠,充满着魅力.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是大正方形的面积有两种求法,一种是等于 , 另一种是等于四个直角三角形与一个小正方形的面积之和,即 , 从而得到等式 , 化简便得结论 .

【方法运用】(1)千百年来,人们对勾股定理的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,图2为美国第二十任总统伽菲尔德的“总统证法”,请你利用图2中的 , , 用两种方法表示出梯形的面积,说明勾股定理;
【方法迁移】(2)如图3,每个小方格的边长为1,点 , , 分别在格点上,连接点 , , 可得 , 求边上的高;
【方法拓展】(3)如图4,在中,是边上的高, , , , 设 , 求的值.
-
2、如图,已知 , 两直角边 , , 点为上一点,现将沿折叠,使点落在斜边上的点处,
(1)、求的长;(2)、求的长. -
3、计算:(1)、;(2)、;(3)、;(4)、 .
-
4、如图,实数在数轴上的对应点可能是点.

-
5、实数a、b、c在数轴上的对应点如图所示,化简等于( )
A、0 B、 C、 D、 -
6、将挂好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为 , 在无风的天气里,彩旗自然下垂,如图①.彩旗完全展平时的尺寸(单位:)如图②的长方形,则彩旗下垂时最低处离地面的最小高度h是( )
A、 B、 C、 D、 -
7、如图 , 在平面直角坐标系中, , , 且满足 , 将线段平移得线段 , 点对应点 , 点对应点 , 点的对应点在轴上,点的对应点在轴上.
(1)、直接写出、、三点的坐标;(2)、如图 , 点是轴上的一个动点,当三角形面积是三角形的面积的一半时,求点的坐标;(3)、如图 , 若动点从点出发向左运动,同时动点从点出发向上运动,两个点的运动速度之比是: , 运动过程中直线和交于点 , 若三角形的面积等于 , 求出点的坐标. -
8、【问题背景】
(1)如图1,点是线段 , 的中点,求证:;

【变式迁移】
(2)如图2,在等腰中,是底边上的高线,点为内一点,连接 , 延长到点 , 使 , 连接 , 若 , 请判断、、三边数量关系并说明理由;

【拓展应用】
(3)如图3,在等腰中, , , 点为中点,点在线段上(点不与点 , 点重合),连接 , 过点作 , 连接 , 若 , , 请直接写出的长.

-
9、已知 ,(1)、求的值;(2)、若x的小数部分是m,y的小数部分是n,求的值.
-
10、如图,有一个圆柱形食品盒,它的高为10cm,底面圆周长为24cm,如果在盒外AD的中点P处有一只蚂蚁,蚂蚁爬行的速度为2cm/s,它想吃到点B处(点A、B正好相对)的食物,那么它至少需要爬行s.

-
11、将长为 , 宽为的长方形白纸,按照如图所示的方法粘合起来,粘合部分宽为 . 设张白纸粘合后的总长度为 , 则与之间的函数关系式为 .

-
12、如图,将三角形纸片沿折叠,使点C落在上的点E处,若 , 则的值为 .

-
13、我市电费实行阶梯式收费,标准如下:
一户居民一个月用电量的范围
电费价格/(元/千瓦时)
不超过200千瓦时的部分
超过200千瓦时,但不超过400千瓦时的部分
超过400千瓦时的部分
(1)、设该市一户居民某月用电量千瓦时,当月的电费元,写出与的关系式:当时,_____;当时,_____;
(2)、某户居民七月份用电量为260千瓦时,求该户这个月的电费;(3)、某户居民八月份缴电费170元,那么该户居民八月份用电量为多少千瓦时? -
14、如图,在中,于点D, , , .
(1)、求的长;(2)、求的长;(3)、求证:是直角三角形. -
15、已知点 , 解答下列各题.(1)、若点P在x轴上,求点P的坐标;(2)、若点Q的坐标为 , 直线轴,求点P的坐标;(3)、若点P在第二象限,且它到x轴、y轴的距离相等,求的立方根.
-
16、已知x﹣2的平方根是±1,2x+y+17的立方根是3,
(1)求x,y的值;
(2)求x2+y2的平方根;
(3)若将平面坐标系内点P(x,y)先向左再向下分别平移个单位,则对应点在第 象限.
-
17、计算:(1)、;(2)、;(3)、;(4)、 .
-
18、若最简二次根式与是同类二次根式,则a= .
-
19、若 , 其中a、b为两个连续的整数,则ab的值为
-
20、在函数中,当时,函数值为;当函数值为4时,自变量x的值为 .