• 1、抛物线y=x-22+3的对称轴是直线(    )
    A、x=-2 B、x=2 C、x=-3 D、x=3
  • 2、已知⊙O半径为3,点P与⊙O在同一平面内.若OP=4,则点P与⊙O的位置关系是 (    )
    A、点 P在⊙O内 B、点P在⊙O上 C、点P在⊙O外 D、无法确定
  • 3、若一元二次方程 x2-2x-m=0有一个根是x=3,则m的值为(    )
    A、3 B、- 3 C、1 D、- 1
  • 4、在下列事件中,不可能事件是 (    )
    A、抛掷一枚硬币,正面向上 B、射击运动员射击一次,命中靶心 C、画一个圆,它是轴对称图形 D、从只有红球的袋子中摸出黄球
  • 5、以下是四款常见的人工智能大模型的图标,其中是中心对称图形的是(    )
    A、 B、 C、 D、
  • 6、如图1,现有一张直角三角形纸片ABC,∠BAC=90°,点D为边BC上一点,将纸片沿AD 所在直线折叠,使点B 落在∠BAC 内部的B'处.

    (1)、若∠CAB'=20°,求∠BAD 的度数;
    (2)、如图2,若点E为线段DC上一点,将纸片沿AE所在直线再次折叠,使点D 落在AB'上,将纸片完全展开后折痕分别为AE', AD, AE. 若∠CAB'=α, ∠BAE'=β, 写出α与β的数量关系并说明理由;
    (3)、如图3,在重叠部分(∠DAB'内部)沿过点A的直线剪一刀,得到三张纸片,若这三张纸片中,以点A为顶点的角的度数之比为2:3:5,写出∠BAD的度数.
  • 7、幻方是中国古代重要的数学成就.在每个小方格中各填入一个数,如果每行、每列、每条对角线上的三个数的和都相等,那么就称这个图是一个三阶幻方.

    (1)、现用2到10这9个整数构造三阶幻方(每个数只能用一次)

    ①将图1的三阶幻方补充完整;

    ②如图2,该同学经过多次尝试,发现幻方中不同位置的数之间有一定的数量关系,若将图中对应位置的数记作a,b,写出a,b满足的数量关系;

    (2)、如图3,对于任意满足条件的三阶幻方,设对应位置的数分别为a,b,c,写出a,b,c满足的数量关系.
  • 8、截止2025年12月14 日,浙江省城市篮球联赛(“浙BA”)A组部分球队积分如下表:

    球队

    胜场

    负场

    积分

    温州队

    16

    0

    32

    杭州队

    15

    1

    31

    诸暨队

    12

    5

    29

    ...

    ...

    (1)、由表可知,胜一场可得分,负一场可得分;
    (2)、截止12月14日台州队共比赛16场,积分为26分,求台州队胜场数与负场数各是多少.
  • 9、如图,在同一平面内有点A 和线段BC.

    (1)、尺规作图:画线段AB,在线段BC上画线段CD 使得CD=AB;(保留作图痕迹)
    (2)、 若BC=5, AB=2, 点E在线段BC上, 且 DE=12AB,求BE 的长.
  • 10、涌泉蜜桔是临海的地方特色产品.现某公司将20箱蜜桔称重,以5kg为基准,超过部分记为正,不足部分记为负,记录为下表:

    与基准的偏差(kg)

    -0.15

    —0.1

    -0.05

    0

    +0.05

    +0.1

    +0.15

    箱数

    1

    2

    2

    6

    5

    1

    3

    (1)、求这20箱蜜桔中最重的一箱和最轻的一箱相差的重量;
    (2)、求这20箱蜜桔的总重量.
  • 11、下面是某同学解方程的过程,请仔细阅读,并完成以下任务:

    解方程:     x-12-x+13=1.

    解: 去分母, 得3(x-1)-2(x+1)=6…①

    去括号, 得3x-3-2x+2=6…②

    移项, 得3x-2x=6+3-2    …③

    合并同类项,得x=7    …④

    (1)、解方程中第①步去分母的依据是
    (2)、该同学求解过程中开始出现错误的是第  ▲ 步;请写出正确的求解过程.
  • 12、先化简,再求值: 2a2+2a-2a2+3a+4,其中a=-37.
  • 13、 计算:
    (1)、 10+(-5)+3;
    (2)、16÷-8+9--1.
  • 14、2026年1月的日历如图所示,已知某镇的集市每5天举办一次,从2026年1月3日开始第一次集市,第二次集市时间为2026年1月8日…以此类推,则2026年的最后一次集市是星期.

  • 15、小潘同学估算。 10大小的计算过程如图所示,用这种方法估算 19的大小,则, 19的大小约为 . (精确到0.01)

  • 16、 ∠2是∠1的补角, ∠3是∠1的余角, 若∠2=4∠3, 则∠1的度数为.
  • 17、 若2a-b-2=0, 则3+4a-2b的值为.
  • 18、 写出一2ab2的一个同类项:.
  • 19、一个容积为1L 的瓶子内装着一些溶液,为求出瓶内溶液的体积,小明测得的相关数据如图所示,则瓶内溶液的体积为(    )

    A、aa+c B、da+c C、aa+b D、dc+d
  • 20、《周易》反映出中国古代二进制计数的思想方法,我们把阳爻“————”当作数字“1”,把阴爻“■■”当作数字“0”,下表是部分四象(两条爻组成)与八卦(三条爻组成)所代表的二进制数,不难发现四象可表示4个不同的二进制数,八卦可表示8个不同的二进制数,则表示64个不同的二进制数需要爻的条数至少是(    )

    四象

    表示的数

    00

    01

    八卦

    表示的数

    000

    001

    A、4 B、6 C、8 D、10
上一页 32 33 34 35 36 下一页 跳转