• 1、中国人工智能公司深度求索推出人工智能助手DeepSeek成为全球范围内广泛关注的焦点.某学校为了解学生对DeepSeek的了解程度,随机调查了部分学生,并根据收集到的信息绘制了图1和图2两幅不完整的统计图.根据图中信息,回答下列问题:

    (1)、求接受随机调查的学生人数,及条形统计图中m的值;
    (2)、如果该校共有学生1000人,根据上述调查结果,求该校学生中对DeepSeek达到“非常了解”和“基本了解”程度的总人数大约是多少;
    (3)、达到“非常了解”程度的学生是2名男生和2名女生,若从这4名学生中随机抽取2人调查具体的使用情况,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.
  • 2、解方程:
    (1)、x24x+1=0
    (2)、3x2+5x2=0
  • 3、已知ab=56 , 则2abb=
  • 4、若关于x的一元二次方程kx22x+3=0有两个不相等的实数根,则k的取值范围是(       )
    A、k<13 B、k<13k0 C、k13 D、k13k0
  • 5、如图为出现在深圳街头的新型无线充电石墩,关于石墩的三视图的描述,正确的是(     )

    A、主视图和左视图相同 B、主视图和俯视图相同 C、左视图和俯视图相同 D、三个视图都相同
  • 6、如图,四边形ABCDO的内接四边形,BCD=120°O的半径为6,则BD的长为

  • 7、某旅游村一家特色菜馆,希望在五一节期间获得好的收益.经测算知,某“特殊菜”的成本价为每份30元,若每份卖50元,平均每天将销售120份;若价格每提高1元,则平均每天少销售2份.五一节期间,为了更好地维护景区形象,物价局规定每份“特色菜”售价不能高于75元.设每份“特色菜”的售价上涨x元(x为正整数),每天的销售利润为y元.
    (1)、当每份“特色菜”的售价上涨多少元时,菜馆才能实现每天销售利润3000元?
    (2)、五一节期间,求每份“特色菜”的售价定为多少元时,每天可获得最大利润?最大利润是多少元?
  • 8、苯(分子式为C6H6)的环状结构是由德国化学家凯库勒提出的,随着研究的不断深入,发现如图1的一个苯分子中的6个碳原子形成了正六边形的结构,其示意图如图2,点O 为正六边形ABCDEF的中心.若CD=1 , 则正六边形的面积为(     )

    A、332 B、322 C、34 D、24
  • 9、为增强学生健康饮食意识,某中学计划开展“营养健康伴成长,合理膳食筑未来”主题教育活动,从3名志愿者(2名男生,1名女生)中随机抽取2人担任活动宣讲员,抽取的恰好是1名男生和1名女生的概率是(  )
    A、19 B、13 C、49 D、23
  • 10、在“勾股定理”一章的学习中,我们体会到了勾股定理应用的广泛性,以及“数形结合”是解决数学问题的一种重要的思想方法.

    (1)、【已有认识】2既可以从算术平方根的角度理解,结合勾股定理的知识,也能将其看成是直角边都为1的直角三角形的斜边长,即2=12+12 , 由此得到在数轴上寻找2所表示的点的方法,如图1.

    【拓展运用】如图2,点O、点A在数轴上,且OA=2AB=1ABOAA , 以点O为圆心,OB长为半径画弧,交数轴于点P , 则数轴中点P表示的数是        . (直接写出答案)

    (2)、【已有认识】结合正方形网格,我们还可以表示某些长度为无理数的线段.

    【拓展运用】请在图3正方形网格(每个小正方形的边长为1)内画出顶点在格点的ABC , 其中AC=2BC=22AB=10 , 并求出ABC的面积,以及点CAB边的距离.

    (3)、【已有认识】如图4,结合直角坐标系,我们发现:要求出坐标系中AB两点的距离,显然是转化为求RtABC的斜边长.下面以求DE为例来说明如何解决:

    从坐标系中发现:D1,4,E6,2

    所以DF=61=7,EF=24=2

    所以由勾股定理可得,DE=72+22=53

    【拓展运用】①在图5中,设Ax1,y1,Bx2,y2ACy轴,BCx轴,ACBC于点C , 则AC=_________,BC=_________,由此得到平面直角坐标系内任意两点间的距离公式,AB=x1x22+y1y22(直接写出答案)

    ②图4中,平面直角坐标系中有两点M3,4,N6,1Px轴上任一点,则PM+PN的最小值为________;(直接写出答案)

    ③应用平面内两点间的距离公式,求代数式x+12+y22+x52+y+12的最小值为:________.(直接写出答案)

  • 11、山青林场准备对一块四边形空地ABCD进行绿化改造,某中学数学兴趣小组的同学们帮助工作人员进行了测量,得到如下数据:AB=15m,CD=8m,AD=17m , 从点A修一条垂直BC的小路AE(垂足为点E),AE=12m ,点E恰好是BC的中点.

    (1)、求BC边的长;
    (2)、求空地ABCD的面积.
  • 12、在同一直角坐标系中,直线y=ax与直线y=2x+a可能是(       )
    A、 B、 C、 D、
  • 13、下列运算正确的是(       )
    A、2+1=3 B、32=62 C、2×3=6 D、(1)2=1
  • 14、下列各数中,是无理数的是(       )
    A、43 B、0.3˙ C、π D、9
  • 15、如图1,直线DE上有一点O,过点O在直线DE上方作射线OC . 最开始,将直角三角板AOB的直角顶点放在O处, OAB=30°AOC=40°一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒 10°的速度逆时针旋转一周停止,设旋转时间为t秒.

    (1)、若射线OC的位置保持不变,当 AOC=20°时,求旋转的时间t;
    (2)、如图2,在旋转的过程中,若射线OC的位置保持不变,是否存在某个时刻,使得射线OAOCOD中的某一条射线是另两条射线所成夹角的平分线? 若存在,求出所有满足题意的 t的取值,若不存在,请说明理由;
    (3)、在三角板AOB旋转过程的同时,射线OC绕着点O按每秒 4°的速度逆时针旋转,当 BOEAOC=30°时,求出t的取值.
  • 16、如下图,C为线段AB延长线上一点,D为线段BC上一点,DC=4BD

    (1)、若AB=12,BC=15 , 求AD的长.
    (2)、若AB=2BD,AB+DC=36EAC的中点,求BE的长.
  • 17、作图题:
    (1)、如图,平面上有四个点ABCD , 根据下列语句画图.

    ①画直线AB

    ②作射线DC , 与直线AB交于点O

    ③连接AD

    ④找到一点P , 使PABCD四点的距离和最短,

    作图的依据是___________.

    (2)、用尺规完成下列作图(不写作法,保留作图痕迹):如图,以点B为顶点、射线BC为一边,作EBC , 使EBC=A

    (3)、已知:如图,ABC绕某点按一定方向旋转一定角度后得到A1B1C1 , 点ABC分别对应点A1B1C1

    ①在图中画出A1B1C1

    A1B1C1是以点___________(填“O1”,“O2”或“O3”)为旋转中心,将ABC___________时针旋转___________度得到的.

  • 18、计算:
    (1)、3276+1167+537
    (2)、81÷214×49÷8
    (3)、32÷27+2×121
    (4)、23÷45+3×122
  • 19、把下列各数对应的序号填在相应的大括号内.

    ①2025,②3 , ③15% , ④12 , ⑤3.14,⑥0,⑦34

    (1)、正数集合:{….};
    (2)、分数集合:{….};
    (3)、非负整数集合:{….}.
  • 20、如图,在AOC中,AOB是直角,BOC=70 , 射线OE平分AOC , 射线OF平分BOC , 则EOF的度数为

上一页 31 32 33 34 35 下一页 跳转