-
1、为了美化校园,某校准备在校园广场中心安装一个圆形喷水池,喷水池中央设置一柱形喷水装置OA高2米,点A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下。点O位于圆形喷水池中心的水面处,按照如图所示建立直角坐标系,该设计水流与OA的水平距离为1米时,喷出的水柱可以达到最大高度3米。
(1)、求该抛物线的函数表达式;(2)、为了使喷出的水流不至于溅落在圆形喷水池外,并且水流落回水面处的外侧还预留1米距离,则该圆形喷水池的半径至少设计为多少米才合理? -
2、某书店以每本30元的价格购进一批图书进行销售,物价局根据市场行情规定这种图书的销售单价不低于42元且不高于62元。在销售中发现,该种图书每天的销售数量y(本)与销售单价x(元)之间存在某种函数关系,对应如下表:
销售单价x(元)
43
45
47
49
…
销售数量y(本)
54
50
46
42
…
(1)、用你所学过的函数知识,求出y与x之间的函数关系式;(2)、请问该种图书每天的销售利润w(元)的最大值是多少?(3)、如果该种图书每天的销售利润必须不少于600元,试确定该种图书销售单价x的范围。 -
3、今年春节某商家购进A,B两种不同造型的哪吒玩偶.已知购进5个A种玩偶和4个B种玩偶共需152元;购进3个A种玩偶和2个B种玩偶共需84元.(1)、求A,B两种玩偶的进价;(2)、由于销售情况较好,商家决定再购进A,B两种玩偶共20个,设总费用为W元,若总费用低于340元但不少于329元,那么当A,B两种玩偶分别购买多少个时,总费用最少?并求出最少总费用.
-
4、已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.当电阻R大于9Ω时,电流I可能是( )
A、3A B、4A C、5A D、6A -
5、圆内接四边形若有一组邻边相等,则称之为等邻边圆内接四边形.
(1)、 如图1, 四边形 ABCD为等邻边圆内接四边形, AD=CD, ∠ADC=60°, 请求出∠ABD的度数;(2)、 如图2, 四边形 ADBC内接于⊙O, AB为⊙O的直径, AB=10, AC=6, 若四边形 ADBC为等邻边圆内接四边形, AD=BD, 求 CD的长.(3)、 如图3, 四边形 ABCD为等邻边圆内接四边形, BC=CD, AB为⊙O的直径, 且AB=48.设BC=x,四边形 ABCD的周长为y,求y与x的关系式,并求出 y的最大值 -
6、水火箭是一种基于水和压缩空气的简易火箭,通常由塑胶汽水瓶作为火箭的箭身,并把水当作喷射剂.图1 是某学校兴趣小组的学生在科技节上制做出的一款简易弹射水火箭.

【实验操作】
为验证水火箭的一些性能,兴趣小组同学通过测试收集了水火箭相对于出发点的水平距离x(单位:m)与飞行时间t(单位:s)的数据,并确定了函数表达式为:x=2t.同时也收集了飞行高度y(单位:m)与飞行时间 t(单位:s)的数据,发现其近似满足二次函数关系.数据如表所示:
飞行时间 t/s
0
2
4
6
…
飞行高度y/m
0
6
8
6
【建立模型】
任务1:求y关于 t的函数表达式.
【反思优化】
图2是兴趣小组同学在室内操场的水平地面上设置一个高度可以变化的发射平台(距离地面的高度为 PQ),当弹射高度变化时,水火箭飞行的轨迹可视为抛物线上下平移得到,线段AB为水火箭回收区域,已知
任务2:探究飞行距离,当水火箭落地(高度为0m)时,求水火箭飞行的水平距离.
任务3:当水火箭落到AB内(包括端点A,B),求发射台高度PQ的取值范围.
-
7、某商品的进价为每件40元,当售价为每件50元时,每个月可卖出210件,如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品的售价上涨x元,每个月的销售量为y件.(1)、则y与x的函数关系式为: , 自变量x的取值范围是:;(2)、每件商品的售价定为多少元时(x为正整数),每个月可获得最大利润?最大的月利润是多少元?(3)、若在销售过程中每一件商品都有a(a>0)元的其它费用,商家发现当售价每件不低于58元时,每月的销售利润随x的增大而减小,请直接写出a的取值范围:.
-
8、为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB,他站在距离教学楼底部E处6米远的地面C处,测得宣传牌的底部B的仰角为60°,同时测得教学楼窗户D处的仰角为30° (A、B、D、E在同一直线上).然后,小明沿坡度i=1:1.5的斜坡从C走到F处,此时DF 正好与地面 CE 平行.
(1)、求点F到直线CE 的距离(结果保留根号);(2)、若小明在F处又测得宣传牌顶部A的仰角为45°,求宣传牌的高度AB(结果精确到0.1米, -
9、如图, E为 AB上一点, ∠A=∠CED=∠B, 连接 CD.
(1)、 求证: △CAB∽△EBD;(2)、 若 CE平分∠ACD, CD=6, BD=4, 求 DE的长. -
10、如图, AB 是 ⊙O 的直径, F, C 是 ⊙O 上两点,且 连接 AC, AF, 过点 C 作 CD⊥AF 交 AF 延长线于点 D, 垂足为点 D.
(1)、 求证: CD 是 ⊙O 的切线;(2)、 若 求 ⊙O 的半径, -
11、“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”,小明购买了“二十四节气”主题邮票,他将“立春”“清明”“雨水”三张纪念邮票(除正面内容不同外,其余均相同)背面朝上,洗匀放好.
(1)、小明从中随机抽取一张邮票是“清明 ”的概率是.(2)、小明从中随机抽取一张邮票,记下内容后,正面向下放回,洗匀后再从中随机抽取一张邮票,请用画树状图或列表的方法,求小明两次抽取的邮票中至少有一张是“雨水”的概率(这三张邮票依次分别用字母A,B,C表示). -
12、已知:抛物线. 经过(2,-3).(1)、求出抛物线与x轴、y轴的交点坐标(2)、X取何值时,Y随X增大而减小
-
13、如图, 若△ABC内一点 P满足∠PAC=∠PCB=∠PBA, 则称点 P为△ABC的布罗卡尔点。已知△ABC中, CA=CB, ∠ACB=120°, P为△ABC的布罗卡尔点,若 则 PB+PC=.

-
14、如图,△ABC的顶点在由大小相同的正方形组成的网格的格点上,则cosA的值为.

-
15、一个扇形的面积是12πcm2 , 圆心角是120°,则这个扇形的弧长是cm.
-
16、如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,若水面下降1m,则水面宽度增加m.(结果可保留根号)

-
17、已知线段a=9, b=4, 则线段a, b的比例中项是.
-
18、如图,P为AB为直径的半圆周上一点,点C在∠PAB的平分线上,且CB⊥Ab于 B, PB交 AC于点 E, 若 AB=4, BE=2, 则 PE的长为( )
A、 B、 C、1 D、 -
19、如图,一张等腰三角形纸片,底边长12 cm,底边上的高为12 cm,现沿底边依次向下往上裁剪宽度均为2cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )
A、第4张 B、第5张 C、第6张 D、第7张 -
20、某农场要建矩形的饲养室,如图所示,一面靠着现有足够长的墙,其他三面用材料建设围墙,在中间再建一道墙隔开,并在两处各留1m宽的门,已知计划中的材料可建墙体总长为22m(不包括门),则能建成的饲养室最大总占地面积为( )
A、52m2 B、48m2 C、45m2 D、41m2