相关试卷
-
1、已知在等边三角形ABC中,点D 是BC的中点,点 E在AB的延长线上,且CD=BE,连接AD,DE. AB=10时,P,Q分别为射线AB、射线CA上的动点,且 若AQ=4, 则 ;BP的长为.

-
2、如图,在已知的△ABC 中,按以下步骤作图:①分别以 B、C为圆心,以大于 的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB 于点D,连结CD, 若 CD=CA, ∠A=50°, 则∠B=.

-
3、 如图, 已知∠1=∠2, 若要使△ABC≌△DCB,(不允许标注其他字母) 则添加的一个条件为.

-
4、把命题“对顶角相等”写成“如果…,那么…”的形式.
-
5、“a与3 的和小于 6”用不等式表示为.
-
6、如图,是由四个全等的直角三角形拼成的“赵爽弦图”,得到正方形ABCD与正方形EFGH, 连结DF并延长, 交BC于点M. 若S正方形ABCD=9,E为AF中点, 则BM的长为( )
A、 B、 C、 D、 -
7、等腰三角形的底边长与其腰长的比值称为这个等腰三角形的“优美比”.若等腰△ABC的周长为20,其中…边长为8,则它的“优美比”为( )A、 B、 C、或2 D、或
-
8、将一副直角三角板按照如图所示的方式摆放,则∠ABC的度数为( )
A、65° B、70° C、75° D、80° -
9、一个不等式的解表示在数轴上如图所示,则这个不等式可以是( )
A、2x≥6 B、x-3<0 C、3-x<0 D、x+3>0 -
10、满足下列条件的△ABC,不是直角三角形的是 ( )A、∠A:∠B:∠C=3:4:5 B、a:b:c=6:8:10 C、∠C=∠A+∠B D、
-
11、若a>b,则下列不等式中成立的是 ( )A、a-5<b-5 B、 C、a+5>b+5 D、-a>-b
-
12、已知: 在△ABC中, AB=5, P是AB 延长线上一点, 作△PA'C与△PAC关于直线 PC 对称.
(1)、 如图1, AD 是∠BAC的平分线, 且AD⊥CB 交于点 D.①求证: BD=CD;
②若AD=4, 当PA'⊥射线AD时, 求线段BP的长;
(2)、 如图2, 连结BA', AA'分别交 PC于点E, F.当 的面积为3时,求△PEA'和△EFA'的面积. -
13、根据以下素材,探索完成任务.
背景介绍
浙BA省赛激战正酣!温州组委会正加急招募志愿者保障赛事.
如何设计志愿者招募方案?
素材一
下表是温州组委会连续两场比赛招募专业志愿者、本地志愿者的情况:
场次
专业志愿者/名
本地志愿者/名
总费用/元
第一场次
3
10
690
第二场次
4
5
545
素材二
下一场次需招募专业志愿者与本地志愿者共20名,为保证赛事顺利开展,专业志愿者不少于3人,但赛事经费有限,总招募费用不能超过1075元.
问题解决
任务一
确定志愿者薪资
结合素材一,求专业志愿者和本地志愿者的每场薪资;
任务二
拟定招募方案
结合素材一、二,求出所有符合要求的招募方案.
-
14、如图, 在△ABC中, AB=AC, D为BA延长线上一点, DE⊥BC于点E, 交AC于点F.
(1)、请判断∠D与∠AFD的大小关系,并说明理由;(2)、 已知∠BAC=4∠B, 求证: △ADF是等边三角形. -
15、对于下列命题,若你认为是真命题,请给出证明;若你认为是假命题,请举出反例加以说明.(1)、 若k>0, AB=3k, BC=4k, AC=6k, 则△ABC是直角三角形;(2)、 若a>4, 则代数式(a+2)(a-2)-a(a-1)是正数.
-
16、如图,已知△ABC,请按要求完成尺规作图:
(1)、 在图中, 画出△ABC的角平分线BD;(2)、在图中,画出等腰三角形BCE,使点E在AC边上. -
17、小明解不等式组 的过程如下:
解: 由①, 得3x+x>-4, 所以4x>-4, 因此x>-1.
由②, 得2-5x≤1-4x-2, 所以-5x+4x≤1-2-2, 合并得, - x≤-3, 因此x≤3.
所以原不等式组解为-1<x≤3.
判断小明的解答过程是否正确.若正确,请在框内打“√”,并把它的解集表示在数轴上;若错误,请在虚线框内打“×”,并写出你的解答过程.
-
18、【文化欣赏】如图1,“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形.
【尝试探究】如图2,以正方形ABCD 的边AB为斜边向外作Rt△ABE,以直角边AE,BE为边向外分别作正方形AEFG,正方形BEHI,连结FH,过点E作直线EP⊥DC于点P,交FH于点Q, 若AE=6, BE=8, 则PQ的长是.

-
19、 若x>y, 且(a-3)x<(a-3)y, 则a的取值范围是.
-
20、 如图, 在△ABC中, AD是中线, E是AD的中点, 若△BDE的面积为1, 则△ABC的面积是.
