相关试卷
- 2017-2018学年数学浙教版七年级下册3.6同底数幂的除法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.5整式的化简 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.4乘法公式 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.3多项式的乘法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.2单项式的乘法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.1同底数幂的乘法 同步练习---提高篇
- 2017-2018学年数学浙教版七年级下册3.7整式的除法 同步练习---基础篇
- 2017-2018学年数学浙教版七年级下册3.6同底数幂的除法 同步练习---基础篇
- 2017-2018学年数学浙教版七年级下册3.5整式的化简 同步练习---基础篇
- 2017-2018学年数学浙教版七年级下册3.4乘法公式 同步练习---基础篇
-
1、下面是三位同学学完分式后所做的三道题,请判断他们的解答是否正确,若不正确,给予改正.
甲:a为何值时,分式有意义?
解:∵原式= ,
∴当时,分式有意义.
乙:式子是分式还是整式?
解:∵原式 , 故是整式.
丙:化简分式 .
解: .
-
2、计算:(1)、;(2)、;(3)、;(4)、 .
-
3、计算: , .
-
4、如图, , , 点B,E,C,F在一条直线上.已知 , 则的面积为( )
A、24 B、26 C、32 D、48 -
5、如图,边长为9的正方形中放置两个长和宽分别为a,( , )的长方形,若长方形的周长为24,面积为35.75,则图中阴影部分的面积为( )
A、18.5 B、21.5 C、27.5 D、35.5 -
6、如图所示,甲、乙两个三角形中能用“”证明和全等的是( )
A、只有甲 B、只有乙 C、甲和乙 D、都不是 -
7、对于线段与点(点不在线段上)给出如下定义:点为线段上任意一点,如果线段的长度有最小值,那么称这个最小值为点与线段的“劣距”,记作;如果线段的长度有最大值,那么称这个最大值为点与线段的“优距”,记作 .
如图,中, , , .
(1)、 , ;(2)、点关于直线的对称点为 , 连接 . 若点在线段上,且]是[点 , 线段]的2倍,直接写出线段的长度;(3)、过点作 . 若点在直线上, , 直接写出的取值范围. -
8、如图,在中, , 射线交边于点 , 且 , 点关于直线的对称点为点 , 连接交于点 , 连接 , .
(1)、依题意补全图形;(2)、证明:;(3)、用等式表示 , 和的数量关系,并证明. -
9、如图,在中, , , , 平分交于点 , 于点 .
(1)、求证:;(2)、求的长. -
10、《千里江山图》是北宋王希孟创作的绢本设色画,现收藏于北京故宫博物院.如图是小山同学所画的一幅长方形的局部临摹作品,装裱前作品长为 , 宽为 , 将其四周装裱上边衬后,整幅作品长与宽的比是 , 且四周边衬的宽度相等,求边衬的宽度.

-
11、下面是证明在直角三角形中,如果一个锐角等于 , 那么它所对的直角边等于斜边的一半的两种添加辅助线的方法.选择其中一种,完成证明.
在直角三角形中,如果一个锐角等于 , 那么它所对的直角边等于斜边的一半.已知:如图,在中, , . 求证: .

方法一证明:如图,延长到点 , 使 , 连接 .

方法二证明:如图,在上截取 , 连接 .

-
12、如图,已知点 , , , 在同一条直线上, , , .
求证: .

-
13、如图,在中. . 求作线段的中点 . 小明发现作线段的垂直平分线交于点 , 点即为所求.
(1)、使用直尺和圆规,依小明的思路作出点(保留作图痕迹);(2)、完成下面的证明.证明:连接 .
∵垂直平分 ,
∴()(填推理依据).
∴ .
∵ ,
∴ , .
∴ .
∴ .
∴ .
∴点为线段的中点.
-
14、在不透明口袋里有除颜色外其它都相同的4个红球和3个白球.(1)、先从袋子里取出m(m≥1)个白球,不放回,再从袋子里随机摸出一个球,将“摸出红球”记为事件A .
①如果事件A是必然事件,则m的值为 .
②如果事件A是随机事件,则m的值为 .
(2)、先从袋子中取出n个红球,再放入除颜色外其它都相同的n+3个黑球并摇匀,若随机摸出一个球是红球的可能性大小是 , 求n的值. -
15、先化简,再求值:已知 , 求代数式的值.
-
16、解方程: .
-
17、计算: .
-
18、计算: .
-
19、如图,在直线上依次摆着7个正方形,已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积分别是 , , , .
(1)、计算:;(2)、按此规律继续摆放正方形,倾斜放置的正方形面积依次增加1,则 . -
20、如图,在中, , , 于点 , 点和点分别是 , 上的动点,连接 , , 则的最小值为 .
