相关试卷
- 2017-2018学年北师大版数学八年级下册同步训练:6.4 多边形的内角和与外角和
- 2017-2018学年北师大版数学八年级下册同步训练:6.3 三角形的中位线
- 2017-2018学年北师大版数学八年级下册同步训练:6.2.2 平行四边形的判定 ——用对角线的关系判定平行四边形
- 2017-2018学年北师大版数学八年级下册同步训练:6.2.1 平行四边形的判定——用边的关系判定平行四边形
- 2017-2018学年北师大版数学八年级下册同步训练:6.1 平行四边形的性质 课时2
- 2017-2018学年北师大版数学八年级下册同步训练:6.1 平行四边形的性质 课时1
- 2017-2018学年北师大版数学八年级下册同步训练:5.4分式方程课时2
- 2017-2018学年北师大版数学八年级下册同步训练:5.4 分式方程课时1
- 2017-2018学年北师大版数学八年级下册同步训练:5.3 分式的加减法 课时2
- 2017-2018学年北师大版数学八年级下册同步训练:5.3 分式的加减法 课时1
-
1、如图,在△ABC中,AB=AC,BD=CD,∠BAC=106°,则∠BAD的度数为( )A、37 B、45° C、53° D、60
-
2、下列大写英文字母中,为中心对称图形的是( )A、
B、
C、
D、
-
3、多项式ma2-mb2的公因式是( )A、m B、m2 C、ma D、mb
-
4、几何探究:
已知: 和 都是等边三角形,连接 CD,BE 交于点 P.
(1)、 如图 1,①判断 BE 与 DC 的数量关系: , = ;② 连接 AP, 与 的数量关系是:;
(2)、 如图 2,H,G 分别是 DC,BE 的中点,① 当 时, ▲ ;
② 当 发生变化时,请探究 的度数是否发生变化,并说明理由;
(3)、 连接 AP,求 的值. -
5、综合实践:数学课上,王老师以“两条线段和的最小值”为题,把“两点之间,线段最短”以及“垂线段最短”两个知识融合在一起展开一节探究活动课.
【活动一】 情境再现,明晰原理
示例 1:将最短路径问题(有人称“将军饮马”问题)转化为数学问题.如图 1①. 用直线l 表示河岸,将军从山脚下的点A出发,到达河岸点C 饮马后回到点B 宿营,怎样走使他每天所走路程的和最短?
作法是:如图 1②,作点B关于直线l的对称点B',连接AB'与直线l交于点C,则点C 即为饮马的地方,此时将军从点A走到点C,再回到点B所走的总路程最短.
(1)、示例 2,如图 1③,要在河岸l上建一座水泵房Q,修建引水渠PQ,使得Q到村庄P的距离最短.施工人员的做法是:过点P作于点Q,将水泵房建在Q处,这样修建引水渠PQ最短,即省人力又省物力.示例 1 中所蕴含的数学原理是( )A、两点之间,线段最短 B、垂线段最短(2)、【活动二】 感悟方法,尝试应用如图 2,在等边三角形ABC中,AD是的中线.
① 直接写出BD与AB的数量关系▲;
② 若 , 点E为AB边的中点,点F为AD上一点,当的值最小时,在图2上标注点F的位置,并求出的最小值;
(3)、【活动三】 迁移拓展,综合应用如图 3,在中, , 点D在斜边BC上,且 , AE是的角平分线,点F,点G分别为AC,AE上一点,求的最小值.
-
6、《几何原本》是古希腊数学家欧几里得的一部数学巨著,他在第二卷“几何与代数”中,阐述了数与形是一家,即通过“以数解形”和“以形助数”,可以把代数公式与几何图形相互转化.(1)、 观察图 1,它所对应的公式为.(填写对应公式的序号)
① ;
② ;
③ .
(2)、 如图 2,边长为 a, b 的长方形,它的周长为 12,面积为 5,求 的值;(3)、 将正方形 ABCD 与正方形 AEFG 如图 3 摆放,当正方形 ABCD 与正方形 AEFG 面积和为 74, , 求图中阴影部分面积和. -
7、 小深同学趁假期与朋友去登山.早上8:00,他们从山脚出发,经过40分钟到达山腰休息平台,休息了10分钟后继续前行登上山顶,在山顶停留了半小时后原路下山.如图是他们出发后的时长x(分钟)与他们离山脚的相对高度y(米)之间的关系示意图.请根据图示信息,解答以下问题:(1)、 该问题情境中,自变量是 , 因变量是;(2)、 在山腰休息平台休息qù他们的相对高度平均变化速度是米/分;他们下山的相对高度平均变化速度是米/分;(3)、 将下表信息补充完整:
出发后时长x(分钟)
20
45
90
110
高山脚的相对高度y(米)
▲ 600
800
▲ (4)、 他们出发后分钟,高山脚的相对高度是700米. -
8、 已知,如图,AD,CE相交于点 , 且.(1)、尺规作图:作线段AD的垂直平分线,垂足为点 , 交AE的延长线于点 , 交CD于点;(保留作图痕迹,不写做法,作图请用黑色字迹的笔描黑)(2)、若 , 求证:
-
9、、先化简,再求值: , 其中 , .
-
10、 计算:(1)、 ;(2)、 .
-
11、 如图,在中, , 过B作于点M,点N为AC边上一点,点P为BC边中点,连接BN,PN,若 , , 则.
-
12、 小亮在一个科学实验课上学习了发声物体的振动实验后,对其作了进一步的探究:在一个支架的横杆点O处用一根细绳悬挂一个小球A,小球A可以自由摆动,如图,OA表示小球静止时的位置.当小明用发声物体靠进小球时,小球从OA摆到OB位置,此时过点B作于点D,当小球摆到OC位置时,OB与OC恰好垂直(图中的O、A、B、C、D均在同一平面上),过点C作于点E.现已知 , 测得 , 则DE的长为cm.
-
13、 国家卫健委发布《中国青少年健康教育核心信息及释义(2018)版》称,青少年应控制电子产品使用,非学习目的的单次使用时间不宜超过15分钟,每天累计不宜超过1小时,我市调研了部分青少年电子产品使用时间,调研结果整理如下表:
调研总人数
500
1000
1500
2000
2500
3000
使用时长超过1小 时的人数
380
759
1137
1522
1900
2280
使用时长超出规定 时长人数的频率
0.760
0.759
0.758
0.761
0.760
0.760
从这3000名学生中任意选取一名学生,其每天使用电子产品时长超过1小时的概率为.
-
14、 中国古代数学有着辉煌的成就,《周髀算经》《九章算术》《孙子算经》《海岛算经》是我国古代数学的重要文献.某中学拟从这4部数学名著中选择1部作为校本课程“数学文化”的学习内容,恰好选中《孙子算经》的概率是.
-
15、 如图,Rt与Rt有公共斜边BC(顶点A、D在BC同侧), , 连接AD,已知 , BD = 8,CD = 6,则的面积为( )A、32 B、16 C、12 D、8
-
16、 如图2,三角板ABC(其中 , )和三角板DEF(其中 , ) 按照如图所示的位置摆放,点 D 在边 AC 上,若 , 则 的度数为( )A、 B、 C、 D、
-
17、 如图,已知 , 添加下列条件仍无法证明的是( )A、 B、 C、 D、
-
18、 下列算式能用平方差公式计算的是( )A、 B、 C、 D、
-
19、 下列成语所描述事件是必然事件的是( )A、水涨船高 B、守株待兔 C、水中捞月 D、一箭双雕
-
20、 如图,是一个缺角的残片,量得 , , 则此三角形残缺的部分为( )A、
B、
C、
D、