-
1、如图,∠ABD,∠ACD的平分线交于点 P,若∠A=55°,∠D=15°,则∠P 的度数为( )
A、15° B、20° C、25° D、30° -
2、如图,将三角形纸片ABC 沿 DE 折叠,当点 A 落在四边形 BCED的外部点A'处时,测得∠1=70°,∠2=140°,则∠A 的度数为( )
A、25° B、30° C、35° D、40° -
3、如图,△ABC 中,∠A=65°,直线DE 交AB 于点 D,交AC 于点 E,则∠BDE+∠CED=( )
A、180° B、215° C、235° D、245° -
4、如图(1),AB=4 cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P 在线段AB 上以1 cm/s 的速度由A 向B运动,同时点Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为ts.
(1)、若点 Q 的运动速度与点 P 的运动速度相同,当t=1时,△ACP 与△BPQ 是否全等? 请说明理由,并判断此时线段 PC 和线段PQ 的位置关系.(2)、如图(2),将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变,设点 Q 运动速度为x cm/s,是否存在实数x,使得△ACP 与△BPQ 全等?若存在,求出相应的x,t的值;若不存在,请说明理由. -
5、如图,某村庄有一块五边形的田地,即五边形ABCDE,其中AB=AE=60 m,CD=70 m,∠ABC=∠AED=90°,连结AC,AD,∠BAE=2∠CAD.
(1)、∠BAC, ∠DAE与∠CAD之间的数量关系为;(2)、为保护田内农作物不被牲畜踩踏,村里决定给这块田地的五边上围一圈栅栏,已知每米栅栏的建造成本是50元,则建造栅栏共需花费多少元?(3)、在△ADE和△ABC区域种上小麦,已知每平方米田地的小麦播种量为21克,则需要提前准备小麦种子千克. -
6、如图,四边形ABCD 和四边形A'B'C'D'中,AB=A'B',BC=B'C',∠B=∠B',∠C=∠C',现在只需补充一个条件 , 就可得四边形ABCD≌四边形A'B'C'D'.

-
7、如图,在△ABC 中,AD 是BC边上的中线,交 BC 于点 D.若∠BAC=90°,则AD 与 BC 的数量关系为.

-
8、如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD,AC,BD 交于点 M,关于结论Ⅰ,Ⅱ,下列判断正确的是( )

结论Ⅰ:AC=BD;结论Ⅱ:∠CMD>∠COD.
A、Ⅰ对,Ⅱ错 B、Ⅰ错,Ⅱ对 C、Ⅰ,Ⅱ都对 D、Ⅰ,Ⅱ都错 -
9、如图,在△ABC 中,∠BAC=90°,AB=AC,D 为平面内一动点,BD=AC,E为BD上一点,BE=2DE,边AB上有两点F,G,BF=FG=GA.下面能表示 CD+AE的最小值的是( )
A、线段CA 的长 B、线段CG的长 C、线段CF 的长 D、线段CB 的长 -
10、如图,已知AB=AC,请你添加一个条件 , 使得△ABD≌△ACD.

-
11、如图,△ABC 中,AB=8,AC=6,BC=7,AD平分∠BAC 交BC于D,点 E为AB边上一点,AE=AC.
(1)、求证:△ADE≌△ADC;(2)、△BDE的周长是. -
12、如图,点 C 是线段 AB 的中点,在AB 的同侧有两点 E,D,使得∠DCB=∠ECA,CD=CE.求证:△ACD≌△BCE.

-
13、在测量一个小口圆柱形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=8cm,EF = 10 cm,则圆柱形容器的壁厚是 cm.

-
14、如图,在3×3 的方格中,每个小方格的边长均为1,若∠1=18.4°,则∠2的度数为( )
A、82.6° B、71.6° C、60° D、61.6° -
15、如图,在△ABC 和△CDE中,AC=BC,CD=CE,∠ACB=∠DCE=35°,BD,AE 相交于点 F,则∠AFD=( )
A、35° B、55° C、145° D、155° -
16、如图,AC,BD 相交于点O,若OA=OD,用“SAS”说明△AOB≌△DOC,还需添加条件( )
A、∠AOB=∠DOC B、OB=OC C、∠C=∠D D、AB=CD -
17、小明在学完“SAS”判定三角形全等后,自己进行总结.如图,他的画图过程说明( )
A、两个三角形的两条边和其中一边的对角对应相等,这两个三角形不一定全等 B、两个三角形的两条边和夹角对应相等,这两个三角形全等 C、两个三角形的两条边和其中一边的对角对应相等,这两个三角形全等 D、两个三角形的三边对应相等,这两个三角形全等 -
18、下列三角形中,全等的是( )
A、①② B、②③ C、③④ D、①④ -
19、【问题背景】如图(1),在四边形ABCD 中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是 BC,CD上的点,且∠EAF=60°,试探究图中线段 BE,EF,DF之间的数量关系.
(1)、小王同学探究此问题的方法如下:延长 FD到点G,使 DG=BE,连结AG,先说明△ABE≌△ADG,再说明△AEF≌△AGF,可得出结论,他的结论应是.(2)、【探索延伸】如图(2),若在四边形 ABCD中,AB=AD,∠B+∠D=180°,E,F分别是 BC,CD上的点,且 上述结论是否仍然成立?请说明理由.(3)、【学以致用】如图(3),四边形ABCD 是边长为5的正方形,∠EBF=45°,直接写出△DEF的周长. -
20、已知 CD 是经过∠BCA的顶点 C 的一条直线,CA=CB,E,F 是直线 CD上两点,∠BEC=∠CFA=∠α.
(1)、若直线 CD 经过∠BCA 的内部,∠BCD>∠ACD.①如图(1),若∠BCA=90°,∠α=90°,则 BE,EF,AF间的数量关系为.
②如图(2),∠α与∠BCA 具有怎样的数量关系,才能使①中的结论仍然成立?写出∠α与∠BCA 的数量关系.
(2)、如图(3),若直线 CD 经过∠BCA 的外部,∠α=∠BCA,①中的结论是否成立?若成立,进行证明;若不成立,写出新结论并进行证明.