-
1、下列说法正确的有( )A、“”是“”的必要不充分条件 B、空集是任何集合的子集 C、若 , 则或 D、集合的子集个数为64个
-
2、已知 , 则y的取值范围是( )A、 B、 C、 D、
-
3、一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g黄金,售货员先将5g的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g的砝码放在天平右盘中,取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.你认为顾客购得的黄金是( )A、大于10g B、等于10g C、小于10g D、与左右臂长度有关
-
4、设集合 , , 若 , 则实数a的取值范围是( )A、 B、 C、 D、
-
5、的解集是( )A、 B、 C、 D、
-
6、已知命题p: , , 则为( )A、 , B、 , C、 , D、 ,
-
7、“”是“”的( ).A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分也不必要条件
-
8、已知集合 , , , 则( )A、 B、 C、 D、
-
9、下列元素所组成的总体,能表示集合的是( )A、高一年级打篮球好的学生 B、高一年级比较难的学科 C、高一年级所有男生 D、高一年级写字好的学生
-
10、球面三角学是研究球面三角形的边、角关系的一门学科.如图,球O的半径为R.A,B,C为球面上三点,设表示以O为圆心且过A,B的圆,表示以O为圆心且过B,C的圆,表示以O为圆心且过A,C的圆,由圆的劣弧围成的曲面(阴影部分)叫做球面三角形,若设二面角分别为 , 则球面三角形的面积为(R为球半径).已知 .
(1)、若平面 , 平面 , 平面两两垂直,求球面三角形的面积;(2)、若平面三角形为直角三角形, , 设 . 则:①求证:;
②延长与球O交于点D.若直线与平面所成的角分别为 , S为中点,T为中点,设平面与平面的夹角为 , 求的最小值以及此时平面截球O的截面面积.
-
11、在中,角 , , 的对边分别是 , , , .(1)、求;(2)、若 , , 是边上一点,且__________,求的长.
在①平分;②;③这三个条件中任选一个,补充到题干中的横线位置,并作答.
注:如果选择多个条件分别作答,按第一个解答计分.
-
12、如图,在直三棱柱中, , , 是线段的中点,在内有一动点(包括边界),则的最小值是
-
13、已知正方体的棱长为2,为正方体内一点,若 , , 则点的轨迹长度为( )A、 B、 C、 D、
-
14、古希腊数学家阿波罗尼斯(约公元前262—公元前190年)的著作《圆锥曲线论》是古代光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知点 , 若圆上不存在点满足 , 则的取值范围是( )A、 B、 C、 D、
-
15、如图,在四棱锥P-ABCD中,底面ABCD是平行四边形, , , , , M为PB的中点,若PC上存在一点N使得平面平面AMN,则( )
A、 B、 C、 D、1 -
16、在正方体中,M是的中点,N是的中点,则异面直线与所成角的余弦值为( )A、 B、 C、 D、
-
17、已知点A,B分别是直线与直线上的点,则的最小值为( )A、0 B、 C、 D、
-
18、直线的倾斜角为( ).A、 B、 C、 D、
-
19、已知点在平面内,且对于平面外一点 , 满足 , 则( )A、 B、 C、 D、
-
20、已知椭圆的标准方程为 , 离心率为且过点 , 直线与椭圆交于 , 两点且不过原点.(1)、求椭圆的标准方程;(2)、若 , 求证:直线经过定点,并求出定点的坐标;(3)、若直线 , , 的斜率分别为 , 且 , 求面积的取值范围.