-
1、若集合 , 则( )A、 B、 C、 D、
-
2、如图,在平行六面体中, , , , , , 为中点,在线段上(包含端点),则下列说法正确的是( )A、存在点 , 使得平面 B、存在点 , 使得平面平面 C、不存在点 , 使得 D、不存在点 , 使得四棱锥有内切球
-
3、对于一个给定的数列 , 令 , 则数列称为数列的一阶和数列,再令 , 则数列是数列的二阶和数列,以此类推,可得数列的阶和数列.(1)、若的二阶和数列是等比数列,且 , , , , 求;(2)、若 , 求的二阶和数列的前项和;(3)、若是首项为1的等差数列,是的一阶和数列,且 , , 求正整数的最大值,以及取最大值时的公差.
-
4、已知函数 , , 其中 .(1)、当时,求曲线在点处切线的方程;(2)、求函数的零点;(3)、用表示、的最大值,记 . 问:是否存在实数 , 使得对任意 , 恒成立?若存在,求的取值范围;若不存在,请说明理由.
-
5、已知点皆为曲线C上点,P为曲线C上异于A,B的任意一点,且满足直线PA的斜率与直线PB的斜率之积为.(1)、求曲线C的方程;(2)、若曲线的右焦点为 , 过的直线与曲线交于 , 求证:直线与直线斜率之和为定值.
-
6、在春节联欢晚会上进行了机器人团体舞蹈表演,某机构随机抽取了100名观众进行问卷调查,得到了如下数据:
喜欢
不喜欢
男性
40
10
女性
20
30
(1)、依据的独立性检验,试分析对机器人表演节目的喜欢是否与性别有关联?(2)、从这100名样本观众中任选1名,设事件“选到的观众是男性”,事件“选到的观众喜欢机器人团体舞蹈表演节目”,比较和的大小,并解释其意义., .
0.050
0.010
0.001
3.841
6.635
10.828
-
7、已知曲线的切线与曲线也相切,若该切线过原点,则 .
-
8、已知 , , 若直线上存在点P,使得 , 则的取值范围为.
-
9、已知实数 , 且满足 , 则 .
-
10、已知函数的定义域为 , , , 则( )A、 B、的图象关于点对称 C、的图象关于直线对称 D、
-
11、样本数据的平均数是 , 方差是 , 极差为 , 则下列判断正确的是( )A、若 , 则的平均数为 B、若 , 则的方差为0 C、若的极差是 , 则 D、若 , 则这组数据的第75百分位数是
-
12、依次抛掷一枚质地均匀的骰子两次,表示事件“第一次抛掷骰子的点数为2”,表示事件“第一次抛掷骰子的点数为奇数”,表示事件“两次抛掷骰子的点数之和为6”,表示事件“两次抛掷骰子的点数之和为7”,则( )A、与为对立事件 B、与为相互独立事件 C、与为相互独立事件 D、与为互斥事件
-
13、已知 , 若正实数满足 , 则的取值范围为( )A、 B、或 C、或 D、
-
14、底面半径为3的圆锥被平行底面的平面所截,截去一个底面半径为1、高为2的圆锥,所得圆台的侧面积为( )A、 B、 C、 D、
-
15、已知是公差不为0的等差数列,其前项和为 , 则“ , ”是“”的( )A、充要条件 B、必要不充分条件 C、充分不必要条件 D、既不充分也不必要条件
-
16、已知复数满足 , 则( )A、1 B、2 C、3 D、
-
17、若集合 , , 则等于( )A、 B、 C、 D、
-
18、在中国古代数学著作《九章算术》中,鳖臑是指四个面都是直角三角形的四面体.如图,在直角中,AD为斜边BC上的高, , , 现将沿AD翻折成 , 使得四面体AB'CD为一个鳖臑,则该鳖臑外接球的表面积为.
-
19、若数列满足:对任意的正整数 , 都存在正整数 , 使得成立,则称数列为“阶归化数列”.设为数列的前项和.(1)、若数列为“2阶归化数列”,且满足 , 证明: , 且等号在时取到.(2)、若数列为“16阶归化数列”,且满足 , 求的所有可能取值.(3)、若正项数列为“阶归化数列”,且满足.证明:对于任意的 , 均有.
-
20、已知双曲线的实轴长为2,且过点为其右焦点.(1)、求双曲线的标准方程.(2)、直线经过点 , 倾斜角为 , 与交于两点(点在两点之间),若 , 求的值.(3)、已知点 , 过点作直线与交于两点,记直线的斜率分别为 , 试问:是否为定值?若是,求出该定值;若不是,请说明理由.