相关试卷
- 高中数学人教新课标A版必修3 第一章 算法初步 1.3算法案例
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.3循环语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.1输入语句、输出语句和赋值语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.1算法与程序框图(包括1.1.1算法的概念,1.1.2程序框图与算法的基本逻辑结构)
- 高中数学人教新课标A版必修3 第三章 概率 3.3几何概型
- 高中数学人教新课标A版必修3 第三章 概率 3.2古典概型
- 高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质
- 高中数学人教新课标A版必修3 第三章 概率 3.1.1随机事件的概率,3.1.2概率的意义
- 高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)
- 高中数学人教新课标A版必修3 第二章 统计 2.2.2用样本的数字特征估计总体的数字特征
-
1、圆台的上下底面半径分别为1和3,圆台的母线与下底面所成角为 , 则圆台的体积为( )A、 B、 C、 D、
-
2、已知向量 , , 则是的( )A、充要条件 B、充分不必要条件 C、必要不充分条件 D、既不充分也不必要条件
-
3、已知全集 , 集合 , 则( )A、 B、 C、 D、
-
4、已知复数满足 , 则( )A、2 B、 C、 D、
-
5、若 , 则的一个可能的值是( )A、 B、 C、 D、
-
6、已知数列 , 则“ , , ”是“数列为等差数列”的( )A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分也不必要条件
-
7、阅读知识卡片,结合所学知识完成以下问题:
知识卡片1:
一般地,如果两数在区间上的图象连续不断,用分点将区间等分成个小区间,在每个小区间上任取一点( , 2,…,n),作和式(其中为小区间长度),当时,上述和式无限接近某个常数,这个常数叫做函数在区间上的定积分,记作 , 即.这里,与分别叫做积分下限与积分上限,区间叫做积分区间,函数叫做被积函数,x叫做积分变量,叫做被积式.从几何上看,如果在区间上函数的图象连续不断且恒有 , 那么定积分表示由直线 , , 和曲线所围成的区域(称为曲边梯形)的面积.
知识卡片2:
一般地,如果在区间上的图象连续不断,并且 , 那么.这个结论叫做微积分基本定理,又叫做牛顿——莱布尼茨公式.例如,如图所示,对于函数(),从几何上看,定积分的值为由直线 , , 和曲线所围成的区域即曲边梯形的面积,根据微积分基本定理可得.
(1)、求下列定积分:① ;
② ;
③ ;
④ .
(2)、已知 , 计算:①;
②
(3)、当 , 时,有如下表达式:.计算: -
8、把正整数1,2,3,…,n按任意顺序排成一行,得到数列 , 称数列为1,2,3,…,n的生成数列.(1)、若是1,2,3,…,8的生成数列,记 , 数列所有项的和为S,求S所有可能取值的和;(2)、若是1,2,3,…,10的生成数列,记 , 若数列中的最小项为T.
①证明:;
②求T的最大值.
-
9、已知函数.(1)、若在上单调递增,求实数a的取值范围;(2)、若函数有两个极值点 , , 且 , 求证:.
-
10、已知函数的定义域为 , , 为偶函数,且 , 则 , .
-
11、已知椭圆: , , 分别是椭圆的左、右焦点 , 若椭圆上存在点 , 满足 , 则椭圆的离心率的取值范围为.
-
12、已知函数的定义域为 , 且 , , 则( )A、 B、为奇函数 C、3是函数的周期 D、
-
13、数学中有许多形状优美,寓意独特的几何体,图1所示的礼品包装盒就是其中之一.该礼品包装盒可以看成是一个十面体,其中上、下底面为全等的正方形,所有的侧面是全等的等腰三角形.将长方体的上底面绕着其中心旋转45°得到如图2所示的十面体 . 已知 , , , 过直线作平面 , 则十面体外接球被平面所截的截面圆面积的最小值是( )A、 B、 C、 D、
-
14、对个正整数用k种颜色染色,使得无法从中选出三个不同色的正整数构成等差数列,设k的最大值为 , 则( )A、 B、 C、 D、
-
15、若 , , , 则( )A、 B、 C、 D、
-
16、若 , , , 则( )A、 B、 C、 D、
-
17、已知函数的图象与函数的图象有且仅有两个不同的交点,则实数的取值范围为( )A、 B、 C、 D、
-
18、已知 , , , 其中 , 则( )A、 B、 C、 D、
-
19、定义域为的偶函数 , 当时, , 若关于的方程有且仅有6个不等的实数根,则的取值范围为( )A、 B、 C、 D、
-
20、的内角的对边分别为 , 已知.(1)、求;(2)、若为锐角三角形, , 求的取值范围.