相关试卷
- 高中数学人教新课标A版必修3 第一章 算法初步 1.3算法案例
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.3循环语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.1输入语句、输出语句和赋值语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.1算法与程序框图(包括1.1.1算法的概念,1.1.2程序框图与算法的基本逻辑结构)
- 高中数学人教新课标A版必修3 第三章 概率 3.3几何概型
- 高中数学人教新课标A版必修3 第三章 概率 3.2古典概型
- 高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质
- 高中数学人教新课标A版必修3 第三章 概率 3.1.1随机事件的概率,3.1.2概率的意义
- 高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)
- 高中数学人教新课标A版必修3 第二章 统计 2.2.2用样本的数字特征估计总体的数字特征
-
1、若抛物线上的点到其焦点F的距离为3,则n的值为 .
-
2、设是数列的前项和, , 则( )A、 B、 C、 D、
-
3、已知方程表示曲线Γ,则下列结论正确的是( )A、若 , 则Γ是轴 B、若 , 则Γ是圆 C、若 , 则Γ是椭圆 D、若Γ是双曲线,则
-
4、如图,在四棱锥V-ABCD中,底面ABCD为正方形,VA=VB=VC=VD,则以下结论中,正确的有( )
A、= B、= C、= D、 -
5、已知是离心率为的椭圆外一点,经过点的光线被轴反射后,所有反射光线所在直线中只有一条与椭圆相切,则此条切线的斜率是( )A、 B、 C、 D、
-
6、设等差数列前n项和为 , 等差数列前n项和为 , 若 . 则( )A、 B、11 C、12 D、13
-
7、已知椭圆的焦点在轴上,则的取值范围为( )A、 B、 C、 D、
-
8、已知椭圆的短轴长和焦距相等,则a的值为( )A、1 B、 C、 D、
-
9、如图,在四棱锥中,侧面平面 , 是边长为2的等边三角形,底面为直角梯形,其中 , , .
(1)、取线段中点M,连接 , 证明:平面;(2)、求直线与平面所成角的正弦值;(3)、线段上是否存在一点E,使得平面与平面夹角的余弦值为?若存在,求出的值;若不存在,请说明理由. -
10、已知的面积记为.请在以下三个条件中,选择一个合适的条件,补充完成下题(只要写序号),并解答该题.
①;②;③
内角 , , 的对边分别为 , , , 已知__________.
(1)、若 , , 求;(2)、若为锐角三角形, , 求的取值范围. -
11、已知点和以点为圆心的圆.(1)、求出以为直径,点为圆心的圆的方程;(2)、设圆与圆相交于 , 两点,直线 , 是圆的切线吗?为什么?(3)、求直线的方程.
-
12、某市为提高市民对文明城市创建的认识,举办了“创建文明城市”知识竞赛,从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六组: , , , , , , 得到如图所示的频率分布直方图.
(1)、求频率分布直方图中a的值与样本成绩的平均数、中位数;(2)、若落在的平均成绩是57,方差是2,落在的平均成绩为69,方差是5,求这两组成绩的总平均数和总方差.参考公式:其中为总样本平均数.
-
13、如图,在棱长为2的正方体 中,已知 分别是棱 的中点,为平面 上的动点,且直线 与直线 的夹角为 , 则( )
A、平面 B、平面截正方体所得的截面图形为正六边形 C、点的轨迹长度为 D、能放入由平面分割该正方体所成的两个空间几何体内部(厚度忽略不计)的球的半径的最大值为 -
14、已知向量 , 则( )A、若 , 则 B、 C、 D、
-
15、为使成为一个圆的方程,的取值可以是( )A、 B、 C、 D、
-
16、已知双曲线的左、右焦点分别为 , 过作直线与双曲线的左、右两支分别交于两点,设为线段的中点,若 , 则双曲线的离心率为( )A、 B、 C、 D、
-
17、已知为坐标原点,抛物线上一点到焦点的距离为6,若点为抛物线的准线上的动点,则的最小值为( )A、4 B、 C、 D、
-
18、如图所示,空间四边形中, , 点在上,且 , 为中点,则等于( )
A、 B、 C、 D、 -
19、已知集合 , 则( )A、 B、 C、 D、或
-
20、已知和为椭圆上两点.(1)、求的离心率;(2)、若过点的直线交于另一点 , 且的面积为12,求直线的方程;(3)、设过点的动直线与椭圆有两个交点、 , 试判断在轴上是否存在点使得向量所成角恒成立,若存在,求出点纵坐标的取值范围;若不存在,说明理由.