• 1、函数y=fx的定义域为I , 区间DI , 对于任意x1x2Dx1x2 , 恒满足fx1+x22fx1+fx22 , 则称函数fx在区间D上为“凸函数”.下列函数在定义域上为凸函数的是(     )
    A、fx=lnx B、fx=ex C、fx=x2 D、fx=x
  • 2、已知函数fx的图象关于原点对称,且满足fx+1+f3x=0 , 且当x2,4时,fx=log12x1+m , 若f202512=f1 , 则m等于(       )
    A、43 B、34 C、43 D、34
  • 3、若a=213b=log213c=sin13 , 则a,b,c的大小关系为(        )
    A、a>b>c B、a>c>b C、b>a>c D、b>c>a
  • 4、设集合A={1,2,3}B={4,5}C={x+y|xA,yB} , 则C中元素的个数为(       )
    A、3 B、4 C、5 D、6
  • 5、已知复数z=i31+i , 则z在复平面内对应的点位于(       )
    A、第一象限 B、第二象限 C、第三象限 D、第四象限
  • 6、已知:①定积分的定义:

    y=fx为定义在a,b上的连续非负函数,为求y=fxx=ax=bx轴围成的曲边梯形的面积,可采取如下方法:

    将区间a,b分为n个小区间,每个小区间长度为ban , 每个区间即可表示为a+bani1,a+banii=1,2,3,n , 再分别过每个区间的左右端点作x轴的垂线与y=fx图象相交,即可得到一个小的曲边梯形.如图,

    n+时,每个小曲边梯形可近似看作矩形,矩形的宽即为每个小区间的长度,长可由每个小区间内的任一点的函数值近似代替(一般用区间端点的函数值),将这样无穷多个小矩形的面积相加,所得之和即为所求的由y=fxx=ax=bx轴围成的曲边梯形的面积,即S=limni=1nfa+baniban , 上式也记为abf(x)dx , 即对y=fxa,b上求定积分.

    ②定积分的计算:abf(x)dx=F(b)F(a)其中F'x=fx.

    根据以上信息,回答以下问题:

    (1)、已知0<α<π2 , 求证:0αcosxdx<α.
    (2)、将x=1x=2y=1xx轴围成的图形面积分别表示为定积分的形式与面积和的极限形式,并求其值;
    (3)、试证明:1101+1102++1200<ln2<1100+1101++1199.
  • 7、已知数列an满足a1=1 , 点an,an+1在直线y=3x+1上.
    (1)、设bn=an+12 , 证明bn为等比数列:
    (2)、求数列an的前n项和Sn
    (3)、设1an的前n项和为Tn , 证明:Tn<32.
  • 8、如图,在三棱柱ABCA1B1C1中,AB1C为正三角形,四边形AA1B1B为菱形.

    (1)、求证:AB1平面A1BC
    (2)、若AC=BC=4 , 且ACBC,ECC1的中点,求平面AB1E与平面ABC的夹角的余弦值.
  • 9、在ABC中,角A,B,C所对的边分别为a,b,c.已知1+tanA1tanA=2+3.
    (1)、求A
    (2)、若c=3 , 且ABC的面积为33 , 求ABC的周长.
  • 10、已知a>0 , 函数fx=xaxx>0.若曲线y=fx与直线y=2交于A,B两点,设A,B的横坐标分别为x1,x2 , 写出x1,x2a的一个关系式:;分别过点A,Bx轴的垂线段AA1,BB1 , 垂足分别为A1,B1 , 则四边形AA1B1B的面积为.
  • 11、已知双曲线C:x2a2y2b2=1a>0,b>0的左、右焦点分别为F1F2 , 若双曲线的左支上一点P满足sinPF1F2sinPF2F1=3 , 以F2为圆心的圆与F1P的延长线相切于点M , 且F1M=3F1P , 则双曲线的离心率为.
  • 12、甲、乙、丙三名工人加工同一型号的零件,甲加工的正品率为90% , 乙加工的正品率为80% , 丙加工的正品率为85% , 加工出来的零件混放在一起.已知甲、乙加工的零件数相同,丙加工的零件数占总数的40%.现任取一个零件,则它是正品的概率为.
  • 13、下列关于函数fx=xxlnx的说法,正确的有(       )
    A、x=1fx的极大值点 B、函数f˙x有两个零点 C、若方程fx=m有两根x1,x2 , 则x1+x2>e D、若方程fx=m有两根x1,x2 , 则x1+x2<e
  • 14、下列函数中,对称中心为1,0的有(       )
    A、y=sinπx B、y=cosx1 C、y=12x12 D、y=x33x2+x+1
  • 15、某校举行数学竞赛,现将100名参赛学生的成绩(单位:分)整理如下:

    成绩

    40,50

    50,60

    60,70

    70,80

    80,90

    90,100

    频数

    5

    25

    30

    20

    10

    10

    根据表中数据,下列结论正确的是(       )

    A、100名学生成绩的极差为60分 B、100名学生成绩的中位数大于70分 C、100名学生成绩的平均数大于60分 D、100名学生中成绩大于60分的人数所占比例超过80%
  • 16、已知平面向量a,b满足a=1,b=2,baa , 则a+b=(       )
    A、3 B、3 C、7 D、1
  • 17、设z=2i1 , 则z的共轭复数为(       )
    A、1+i B、1i C、1+i D、1i
  • 18、已知集合A=a1,a2,,an中的元素都是正整数,且a1<a2<<an . 若对任意x,yA , 且xy , 都有|xy|xy25成立,则称集合A具有性质M
    (1)、判断集合{1,2,3,4}是否具有性质M
    (2)、已知集合A具有性质M , 求证:1ai1anni25(i=1,2,,n)
    (3)、证明:3是无理数.
  • 19、(1)已知不等式1+k2xk4+k2+6 , 其中x,kR

    ①若x=4 , 解上述关于k的不等式;

    ②若不等式对任意kR恒成立,求x的最大值.

    (2)求关于x不等式:ax2(a+2)x+20aR)的解集.

  • 20、小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本3万元,每生产x万件时,该产品需另投入流动成本Wx万元.在年产量不足8万件时,W(x)=13x2+x , 在年产量不小于8万件时,W(x)=6x+100x38 . 每件产品的售价为5元.通过市场分析,小王生产的商品能当年全部售完,设年利润为Lx(单位:万元).

    (1)若年利润Lx(单位:万元)不小于6万元,求年产量x(单位:万件)的范围.

    (2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?

上一页 28 29 30 31 32 下一页 跳转