相关试卷
- 河北省张家口市2016-2017学年高一下学期数学期末考试试卷
- 河北省邢台市2016-2017学年高一下学期数学期末考试试卷
- 河北省唐山市2016-2017学年高一下学期数学期末考试试卷
- 河北省廊坊市省级示范高中联合体2016-2017学年高一下学期数学期末考试试卷
- 河北省衡水市深州中学2016-2017学年高一下学期数学期末考试试卷
- 河北省邯郸市2016-2017学年高一下学期数学期末考试试卷
- 河北省承德市2016-2017学年高一下学期数学期末考试试卷
- 河北省保定市2016-2017学年高一下学期数学期末考试试卷
- 江西省赣州市2016-2017学年高一下学期期末数学考试试卷
- 四川省雅安市2016-2017学年高二下学期数学期末考试试卷(文科)
-
1、已知复数 , 则复数的虚部为( )A、 B、 C、 D、
-
2、设均为单位向量,且 , 则( )A、 B、 C、 D、
-
3、已知函数(其中是实数).
(1)若 , 求曲线在处的切线方程;
(2)求函数的单调区间;
(3)设 , 若函数的两个极值点恰为函数的两个零点,且的范围是 , 求实数的取值范围.
-
4、放行准点率是衡量机场运行效率和服务质量的重要指标之一.某机场自2012年起采取相关策略优化各个服务环节,运行效率不断提升.以下是根据近10年年份数与该机场飞往A地航班放行准点率()(单位:百分比)的统计数据所作的散点图及经过初步处理后得到的一些统计量的值.

2017.5
80.4
1.5
40703145.0
1621254.2
27.7
1226.8
其中 ,
(1)、根据散点图判断,与哪一个适宜作为该机场飞往A地航班放行准点率y关于年份数x的经验回归方程类型(给出判断即可,不必说明理由),并根据表中数据建立经验回归方程,由此预测2023年该机场飞往A地的航班放行准点率.(2)、已知2023年该机场飞往A地、B地和其他地区的航班比例分别为0.2、0.2和0.6.若以(1)中的预测值作为2023年该机场飞往A地航班放行准点率的估计值,且2023年该机场飞往B地及其他地区(不包含A、B两地)航班放行准点率的估计值分别为和 , 试解决以下问题:(i)现从2023年在该机场起飞的航班中随机抽取一个,求该航班准点放行的概率;
(ii)若2023年某航班在该机场准点放行,判断该航班飞往A地、B地、其他地区等三种情况中的哪种情况的可能性最大,说明你的理由.
附:(1)对于一组数据 , , …, , 其回归直线的斜率和截距的最小二乘估计分别为 ,
参考数据: , , .
-
5、已知展开式的二项式系数和为512,且.(1)、求的值;(2)、求的值;(3)、求被8整除的余数.
-
6、已知等比数列的首项 , 公比为 , 前项和为 , 且 , , 成等差数列.(1)、求的通项;(2)、若 , 求的前项和.
-
7、对于三次函数 , 给出定义:设是函数的导数,是函数的导数,若方程有实数解 , 则称点为函数的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数 , 请你根据上面的探究结果,解答以下问题:
①函数的对称中心坐标为;
②计算.
-
8、已知的展开式中含的项的系数为.
-
9、从1,2,3,6,9中任取两个不同的数相乘,则不同的乘积结果有种,乘积为偶数的取法有种.
-
10、有甲、乙两个小组参加某项测试,甲组的合格率为70%,乙组的合格率为90%.已知甲、乙两组的人数分别占这两组总人数的70%,30%.从这两组组成的总体中任选一个人,用事件 , 分别表示选取的该人来自甲、乙组,事件表示选取的该人测试合格,则( )A、 B、 C、 D、
-
11、甲、乙、丙、丁、戊五人并排站成一排,下列说法正确的是( )A、如果甲、乙必须相邻,那么不同的排法有24种 B、最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种 C、甲、乙不相邻的排法种数为72种 D、甲在乙左边的排列的排法有30种
-
12、 , , 当时,都有 , 则实数的最小值为( )A、 B、 C、 D、1
-
13、已知的定义域为 , 为的导函数,且满足 , 则不等式的解集是( )A、 B、 C、 D、
-
14、已知在8个电子元件中,有2个次品,6个合格品,每次任取一个测试,测试完后不再放回,直到2个次品都找到为止,则经过3次测试恰好将2个次品全部找出的概率为( )A、 B、 C、 D、
-
15、为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:
使用手机情况
成绩
合计
及格
不及格
很少
20
5
25
经常
10
15
25
合计
30
20
50
参考公式: , 其中.
附表:
0.05
0.025
0.010
0.005
0.001
3.841
5.024
6.635
7.879
10.828
参照附表,得到的正确结论是( )
A、依据小概率值的独立性检验,认为“经常使用手机与数学学习成绩无关” B、依据小概率值的独立性检验,认为“经常使用手机与数学学习成绩有关” C、在犯错误的概率不超过0.5%的前提下,认为“经常使用手机与数学学习成绩无关” D、在犯错误的概率不超过0.5%的前提下,认为“经常使用手机与数学学习成绩有关” -
16、已知离散型随机变量的概率分布列如下表:则数学期望等于( )A、 B、 C、 D、
-
17、在等差数列中,若 , 则公差( )A、1 B、2 C、3 D、4
-
18、某高一数学研究小组,在研究边长为1的正方形某些问题时,发现可以在不作辅助线的情况下,用高中所学知识解决或验证下列有趣的现象.若分别为边上的动点,当的周长为2时,有最小值(图1)、为定值(图2)、到的距离为定值(图3).请你分别解以上问题.
(1)、如图1,求的最小值;(2)、如图2,证明:为定值;(3)、如图3,证明:到的距离为定值. -
19、在中, .(1)、证明:为的重心.(2)、若 , 求的最大值,并求此时的长.
-
20、“熵”常用来判断系统中信息含量的多少,也用来判断概率分布中随机变量的不确定性大小,一般熵越大表示随机变量的不确定性越明显.定义:随机变量对应取值的概率为 , 其单位为bit的熵为 , 且 . (当 , 规定 . )(1)、若抛掷一枚硬币1次,正面向上的概率为 , 正面向上的次数为 , 分别比较与时对应的大小,并根据你的理解说明结论的实际含义;(2)、若拋掷一枚质地均匀的硬币次,设表示正面向上的总次数,表示第次反面向上的次数(0或1).表示正面向上次且第次反面向上次的概率,如时, . 对于两个离散的随机变量 , 其单位为bit的联合熵记为 , 且 .
(ⅰ)当时,求的值;
(ⅱ)求证: .