• 1、某正方体的平面展开图如图所示,则原正方体中与“数”字所在的面相对的面上的字是(       )

       

    A、 B、 C、 D、
  • 2、下列各组数中,互为相反数的是(       )
    A、3和13 B、3和3 C、1313 D、1313
  • 3、已知x>0,y>0 , 且x+2y=1 , 则下列正确的有(       )
    A、xy的最大值是18 B、2x+4y的最小值是22 C、1x+2y的最大值是9 D、x+2y的最小值是2
  • 4、已知zi=1i , 则z=(       ).
    A、1i B、1+i C、1i D、1+i
  • 5、如图,在四棱锥PABCD中,底面ABCD是矩形,PA=AD=4AB=2PA平面ABCD , 且MPD的中点.

    (1)、求证:AM平面PCD
    (2)、求异面直线CDBM所成角的正切值;
    (3)、求直线CD与平面ACM所成角的正弦值.
  • 6、若复数z=λ1+sinθcos2θ2+isinθ(0<θ<π)在复平面内对应的点位于直线y=x上,则λ的最大值为
  • 7、在三棱锥PABC中,PC=BC=1AC=2AP=3ACB=90°PB的中点为M , 点D在线段AB上,且满足DB=DP.

    (1)、求证:PBCD
    (2)、当平面PDC平面ABC时,

    ①求点P到平面ABC的距离;

    ②若NAB的中点,求平面PAC与平面MNC夹角的余弦值.

  • 8、如图,在四棱锥PABCD,PA底面ABCD,AD//BCABBC,PA=AD=4,BC=1,AB=3

    (1)、证明:平面PCD平面PAC
    (2)、求AD与平面PCD所成角的正弦值.
  • 9、如图,在ABC中,已知AB=2AC=3BAC=60 , N是AC的中点,BM=23BC , 设AMBN相交于点P.

    (1)、求cosMPN的值;
    (2)、若CP=xAB+yAC , 求x+y的值.
  • 10、若α是第三象限角,且sinα+βcosβsinβcosα+β=513 , 则tanα2的值为(       )
    A、5 B、5 C、513 D、513
  • 11、如图,三棱锥PABC中,PA平面ABC,ABAC,AB=15,AC=20M是棱BC上一点,且AM=12.

       

    (1)、证明:BC平面PAM
    (2)、若PA=10 , 求PA与平面PBC所成角的正弦值.
  • 12、已知曲线C1:y=sin2x,C2:y=sin2xπ3 , 则(       )
    A、C1向右平移π6个单位,可以得到C2 B、C1向左平移2π3个单位,可以得到C2 C、C1C20,π有2个公共点 D、C1在原点处的切线也是C2的切线
  • 13、已知cosα+β=14,cosαcosβ=13 , 则tanαtanβ=(       )
    A、14 B、13 C、3 D、4
  • 14、如图,四棱锥PABCD的底面ABCD是正方形,PAD是正三角形,平面PAD平面ABCD,M是PD的中点.

    (1)、求证:PB//平面MAC;
    (2)、求二面角MACD的余弦值;
    (3)、在棱PC上是否存在点Q使平面BDQ平面MAC成立?如果存在,求出PQQC的值;如果不存在,请说明理由.
  • 15、某市为提高市民对文明城市创建的认识,举办了“创建文明城市”知识竞赛,从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50,50,60,...,90,100 , 得到如图所示的频率分布直方图.

    (1)、求频率分布直方图中a的值;
    (2)、求样本成绩的P75
    (3)、已知落在50,60的平均成绩是54,方差是7,落在60,70的平均成绩为66,方差是4,求两组成绩的总平均数z¯和总方差s2
  • 16、已知ABC的内角ABC所对的边分别为abc , 则下列说法正确的是(       )
    A、sinB>sinC , 则B>C B、a=26,b=4A=π4 , 则三角形有一解. C、bcosBccosC=0 , 则ABC一定为等腰直角三角形. D、ABC面积为SS=14a2+b2c2 , 则C=π4
  • 17、在三棱锥PABC中,AC平面PABAB=6AC=10BP=22ABP=45° , 则三棱锥PABC外接球的表面积为(     )
    A、144π B、128π C、140π D、148π
  • 18、已知函数f(x)=(3sinx+cosx)cosx12 , 若f(x)在区间[π4,m]上的值域为[32,1] , 则实数m的取值范围是(       )
    A、[π6,π2) B、[π6,π2] C、[π6,7π12) D、[π6,7π12]
  • 19、已知ab为正实数,且a>1b>1abab=0 , 则(       )
    A、ab的最大值为4 B、2a+b的最小值为3+22 C、1a1+1b1的最小值为2 D、a+b的最小值为322
  • 20、如图,在复平面内,复数z1z2对应的点分别为Z1Z2 , 则复数z1z2的虚部为(       )

       

    A、i B、1 C、3i D、3
上一页 1281 1282 1283 1284 1285 下一页 跳转