• 1、如图,已知棋子“车”的坐标为(-2,2),棋子“炮”的坐标为(3,1),则棋子“马”的坐标为(    )

    A、(2,1) B、(2,0) C、(0,1) D、(1,2)
  • 2、下列命题史,正确的是(    )
    A、若a>b,则-2+a<-2+b B、若a>b,则-2a>-2b C、者2a>2b,则a>b D、若a>b,则ac2>bc2
  • 3、下面垃圾分类图标中的图案,属于轴对称图形的是(    )
    A、 B、 C、 D、
  • 4、如图

    (1)、【问题提出】

    如图1,AB为O的直径,ACAB,AB=16,AC=6,PO上的一动点,连结CP,求CP的最小值.

    (2)、【问题探究】

    如图2,ABBC,AB=23,BC=2,DABC内部一点,且满足ADB=120° , 求CD的最小值.

    (3)、【问题解决】

    如图3,正方形ABCD是某社区的一块空地,经测量,AB=100m . 社区管委会计划对该空地及周边区域进行重新规划利用,在射线AD上取一点E , 沿BE,CE修两条小路,并在小路BE上取点F , 将CF段铺设成某种具有较高观赏价值的休闲通道(通道宽度忽略不计)。根据设计要求,BFC=BCE , 为了节省铺设成本,要求休闲通道CF的长度尽可能小,问CF的长度是否存在最小值?若存在,求出CF长度的最小值;若不存在,请说明理由.

  • 5、已知二次函数y=a(x-6)(x+m)(a,m为常数,且a≠0)的图象经过点(-2,0),(5,7)
    (1)、求二次函数的表达式.
    (2)、若0≤x≤n,

    ①当n=3时,求y的最大值;

    ②若y的最大值与最小值之和为27,求n的值,

  • 6、如图,四边形ABCD是菱形,O经过A,D两点,且交对角线AC于点P , 连结PB,此时PA=PB

    (1)、求证:APBADC
    (2)、若AB=6,AC=7.2 , 求点P到AD的距离.
  • 7、如图,小区门口道闸的栅栏DE长度不变,立柱OB垂直于地面,DE绕点B旋转得到AC,若OB=0.5m,AB=1.5m,BC=4.5m.

    (1)、求栅栏最右端C离地面的最大高度,
    (2)、若想使栅栏最右端C离地面的高度达到3.8m,请你给出一种改造的方案.
  • 8、小明为帮助自己记忆古诗,将5句重点古诗分别制成表面看上去无差别的卡片,并分别放入甲、乙两个口袋中(如图).甲口袋中装有A,B,C三张卡片,乙口袋中装有D,E两张卡片.

    (1)、若从乙口袋中随机抽取1张卡片,抽到思乡的古诗的概率是.
    (2)、从两个口袋中分别随机抽取1张卡片,求抽取的两张卡片至少有一张是励志古诗的概率
  • 9、“立定跳远”是田径运动项目之一.运动员起跳后的腾空路线可以近似地看做是抛物线的一部分,建立如图所示的平面直角坐标系(起跳点为原点,地面所在直线为:轴,起跳点所在的竖直方向为y轴),从起跳到落地的过程中,设运动员距离地面的竖直高度为y(m),距离起跳点的水平距离为x(m).已知,运动员跳到最高处时距离地面的竖直高度为0.4m,距离起跳点的水平距离为1.1m.

    (1)、求该运动员腾空路线的表达式
    (2)、求该运动员落地时距离起跳点的水平距离
  • 10、如图,已知OABC的外接圆,B=2A,DAC的中点.

    (1)、请只用无刻度的直尺,在AC上找一点E , 连结BE,使得BECABC . (不写作法,保留作图痕迹)
    (2)、在(1)的条件下,若BE=BC=2 , 求CE的长.
  • 11、已知抛物线y=ax2+bx32(a,b为常数,且a0)的图象如图所示.

    (1)、求该抛物线的函数表达式
    (2)、当y>0时,直接写出x的取值范围。
  • 12、在一次课题学习中,某学习小组受赵爽弦图的启发,将正方形改编成矩形,如图所示,由两对全等的直角三角形(AHDCFB,ABECDG)和矩形EFGH拼成大矩形ABCD.若BC=3AB , 矩形EFGH与矩形ABCD的面积比为49 , 则GHCG=

  • 13、如图,AB为O的直径,PO上一点,以P为圆心,适当长为半径作弧交直径AB所在的直线于点C,D;分别以C,D为圆心,大于12CD长为半径作弧,两弧交于点E;连结PE并延长交O于点F , 交AB于点G;以B为圆心,PF长为半径作弧交O于点M , 连结AM.若AM=8,BG=1 , 则O的半径长是

  • 14、如图1,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体。最大程度地传承了苏州的历史文化.如图2,“门”的内侧曲线呈抛物线形,已知其底部AB的宽度为80米,高度为200米,CD//AB,CD长20米,则CD离地面AB的垂直高度为米,

  • 15、如图是一张书法练习纸,其中的竖格线都互相平行,且相邻两竖格线间的距离相等.不同竖格线上的三点A,B,C在同一直线上,若线段AB=3cm,则线段BC的长为cm.

  • 16、“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”,梅好同学构面了四张“二十四节气”主题邮票,其中“立春”、“立夏”、“立秋”、“立冬”各一张,每张邮票的形状大小都相同,将他们背面朝上放置,从中随机抽取一张恰好抽到“立春”的概率是
  • 17、已知二次函数y=(xa)(xb)+3(a,b是实数,且ab) , 设该函数的最大值为k , 则下列说法正确的是(   )
    A、3<a<5,3<b<5 , 则k<3 B、3<a<5,3<b<5 , 则k>4 C、3<a<5,5<b<7 , 则k>3 D、3<a<5,5<b<7 , 则3<k<7
  • 18、已知二次函数y=ax2+bx+c(a,b,c为常数,且a0)yx的部分对应值如下表:

    x

    -2

    -1

    0

    1

    y

    1

    2

    1

    -2

    则下列判断中正确的是(   )

    A、抛物线开口向上 B、抛物线与y轴交于负半轴 C、x=3时,y>0 D、方程ax2+bx+c=0的正根在0与1之间
  • 19、如图,AB是半圆O的直径,BAC=40° , 则D=(   )

    A、140° B、130° C、50° D、40°
  • 20、正方形的面积S(cm2)与周长C(cm)之间的兩数关系式是(   )
    A、S=116C2(C>0) B、S=14C2(C>0) C、S=14C(C>0) D、S=C2(C>0)
上一页 8 9 10 11 12 下一页 跳转