相关试卷

  • 1、如图,二次函数y=ax2+bx+c(a0)的图象过点1,0 , 抛物线的对称轴是直线x=1 , 顶点在第一象限,给出下列结论:①ab<0;②4a+2b+c>0;③3a+c>0;④若Ax1,y1Bx2,y2(其中x1<x2)是抛物线上的两点,且x1+x2=2 , 则y1=y2 . 其中正确的结论有(    )

    A、1个 B、2个 C、3个 D、4个
  • 2、二次函数y=ax2+bx+c的变量x与y部分对应值如下表,那么x=4时,对应的函数值y为(  )

    x

    3

    2

    1

    3

    5

    y

    7

    0

    9

    5

    7

    A、0 B、3 C、9 D、5
  • 3、对于二次函数y=-x+42+3的图象,下列说法正确的是(  )
    A、开口向上 B、y有最小值是3 C、对称轴是直线x=4 D、x4时,y随x增大而增大
  • 4、若n+2+m+8=0 , 则nm=
  • 5、我国古代的“赵爽弦图”是由四个全等的直角三角形拼成.如图,正方形ABCD与正方形EFGH是由四个全等的直角三角形拼成的,连结DF . 若BG=4EF=1 , 则DF:AD等于(     )

    A、17:4 B、17:5 C、15:4 D、15:5
  • 6、已知,在平面直角坐标系中,直线y=34x+33x,y轴于点A,B,D为线段OA上一动点,连BD , 过D作BD的垂线,并截取DE , 使DE=BD , 连BE . 分别过A,B作坐标轴的平行线交于点C.

    (1)、如图1,当点E在CA上时,求证:BODDAE
    (2)、如图2,过点C作BD的平行线交x轴于F,若点E恰好在CF上,求点D的坐标;
    (3)、如图3,G为BE的中点,连AG , 直接写出AG的最小值.
  • 7、如图:正方形网格中每个小方格的边长为1,且点A、B、C均为格点.

    (1)求△ABC的面积.

    (2)通过计算判断ABC的形状.

  • 8、某中学为落实教育部办公厅关于进一步加强中小学生体质管理的通知文件要求,决定增设篮球、足球两门选修课程,为此需要购进一批篮球和足球.已知购买2个篮球和3个足球需要510元;购买3个篮球和5个足球需要810元.

    根据以上信息解答:

    (1)、购买1个篮球和1个足球各需要多少钱?
    (2)、学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元,则有哪几种购买方案?
    (3)、在上面(2)中条件下,哪一种方案所需费用最少?请求出这个最少的费用是多少元.
  • 9、行李托运简单便捷,给人们的出行带来了极大的便利,省事又省心.某客运公司规定旅客可以免费携带一定质量的行李,当行李的质量超过规定时,需付的行李托运费y(元)与行李质量xkg之间的关系如图所示.

    (1)、求yx之间的函数表达式;
    (2)、若张先生某次出差时所付的行李托运费用为56元,求张先生托运行李的质量.
  • 10、(1)已知x,y是有理数,若y=x24+4x2x24 , 求xy的平方根;

    (2)已知a,b是等腰ABC的两边长,且满足2a24a+4=25b3 , 求ABC的周长.

  • 11、计算:
    (1)、2712+6÷2
    (2)、2122+121
  • 12、若点A(a,2)B(b,4)在直线y=x+5上,则a、b的大小关系是ab.
  • 13、如图①所示(图中各角均为直角),动点P从点A出发,沿ABCDE路线匀速运动,AFP的面积y(cm2)随点P运动的时间x(s)之间的函数关系图象如图②所示,已知AF=6cm , 下列说法错误的是(  )

          

    A、动点P速度为1cm/s B、a的值为30 C、EF的长度为10cm D、y=15时,x的值为8
  • 14、如图,在矩形ABCD中,AB=6BC=8EF是对角线AC上的两点,AE=CF=2 , 点P在边AD上运动(不与点AD重合),连结点PAC的中点O并延长交BC于点Q , 连结PEPFQEQF . 在点P从点D运动到点A的整个过程中,四边形PEQF的形状变化依次是(       )

    A、平行四边形→菱形→矩形→平行四边形 B、平行四边形→矩形→菱形→平行四边形 C、平行四边形→菱形→平行四边形→矩形→平行四边形 D、平行四边形→矩形→平行四边形→菱形→平行四边形
  • 15、在植树节期间,某校组织老师积极参加植树活动.为了了解植树情况,随机抽取部分老师的植树棵数进行统计.统计结果共有3棵,4棵,5棵,6棵四种情况,并绘制了如图所示的统计图(尚不完整),若这组数据的众数是5棵,设植树5棵的老师为a人,则a的取值范围是(       )

    A、a<16 B、12<a<16 C、a>10 D、a>16
  • 16、下列运算中,结果正确的是(  )
    A、5+2=52 B、63=3 C、10÷5=2 D、8×3=26
  • 17、根据以下素材,探索完成任务.

    有A、B两种卡纸,可用来做小旗子,若1张A卡纸和1张B卡纸共能做小旗子8面,2张A卡纸和3张B卡纸共能做小旗子19面.

    (1)、求A、B两种卡纸.每张可分别做几面小旗子.
    (2)、由于艺术节场地布置的需要,某学校打算采购A、B两种卡纸. A卡纸每张4元,B卡纸每张3元,正好赶上商场促销活动:买一张A卡纸,就赠送一张B卡纸.学校计划用这两种卡纸共同做60面小旗子.

    ①制作过程中,若A、B卡纸恰好充分利用,没有余料剩余,则做这些小旗子需要两种卡纸各多少张,并求出最低采购费用.

    ②由于艺术节实际需要,现须用卡纸再做小灯笼42个.已知一张A、B卡纸可分别做小灯笼3个和2个.请你结合方案评价表直接写出一种小旗子、小灯笼的制作数量方案(同一张卡纸只能做同一类手工,即不能既做小旗子又做小灯笼,采购费用低于65元).

    由A卡纸制作

    由B卡纸制作

    小旗子(面)

    小灯笼(个)

    小旗子(面)

    小灯笼(个)





    方案评价表

    方案等级

    采购费用

    制作中卡纸使用情况

    评分

    优秀

    低于65

    两种卡纸均无余料剩余

    3分

    良好

    低于65

    仅一种卡纸有余料剩余

    2分

    合格

    低于65

    两种卡纸均有余料剩余

    1分

  • 18、化简求值.先化简  4x2x+2+x22xx24x+4 , 再从0,1,2,中选择一个合适的数代入并求值.
  • 19、解下列方程组:
    (1)、x+y=12xy=4
    (2)、3x1=y+4x+y3+xy6=1
  • 20、如图,已知ABCD , 点E,F分别在直线AB,CD上,点P在AB,CD之间,EF的右侧,且EPF=60° . 若将射线EA沿直线EP折叠得射线EA' , 射线FC沿直线FP折叠得射线FC'EA'FC'所在直线交于点H,则EHF=

上一页 114 115 116 117 118 下一页 跳转