• 1、若二次函数y=ax2﹣bx﹣1的图象经过点(2,1),则2024+2a﹣b= 
  • 2、如图,△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC,交AB的延长线于点E,垂足为点F.

    (1)、判断直线DE与⊙O的位置关系,并说明理由;
    (2)、若AB=18,sinA=13 , 求BE的长.
  • 3、如图,反比例函数y=kx(x0)与一次函数y=2x+m的图象交于点A(1,4),BC⊥y轴于点D,分别交反比例函数与一次函数的图象于点B、C.
    (1)、求反比例函数和一次函数的表达式;
    (2)、连接AB,若OD=1,求△ABC的面积.
  • 4、某校数学兴趣小组通过对如图所示靠墙的遮阳篷进行实际测量,得到以下数据:遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD的长.(参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29).

  • 5、先化简,再求值:x2+4x+4x2+2xx24x24x+4÷(4x2+1) , 且x满足﹣2≤x≤2,取一个值即可.
  • 6、   
    (1)、计算:(π﹣1)0+9tan30°﹣27+|﹣3|﹣(12)1
    (2)、解不等式组:{2x31x+131 , 并将解集在数轴上表示出来.
  • 7、如图,四边形ABCD是⊙O的内接四边形,∠B=58°,∠ACD=40°,若⊙O的半径为5,则弧CD的长为 

  • 8、若点P(3m+1,2﹣m)在x轴上,则点P的坐标是 
  • 9、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b),(m≠1的实数).其中正确结论个数有(  )

    A、1个 B、2个 C、3个 D、4个
  • 10、《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到800里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少2天,已知快马的速度是慢马的52倍,求规定时间.设规定时间为x天,则下列分式方程正确的是(  )
    A、800x2=52×800x+1 B、800x+2=52×800x1 C、800x1=52×800x+2 D、800x+1=52×800x2
  • 11、如图,AB是⊙O的直径,DB,DE分别切⊙O于点B、C,若∠ACE=18°,则∠D的度数是(  )

    A、18° B、36° C、48° D、72°
  • 12、如图,在△ABC中,∠BAC=90°,∠B=30°,AC=4.以点A为圆心,以AC长为半径作弧,交BC于点D;再分别以点C和点D为圆心,以大于12DC长为半径作弧,两弧相交于点E,作射线AE交BC于点F,则BF的长为(  )

    A、5 B、6 C、7 D、8
  • 13、下列计算正确的是(  )
    A、x6÷x2x3 B、5x3•3x5=15x8 C、x+2)(x﹣2)=x2﹣2 D、5x﹣2x=3
  • 14、某小组8名学生的中考体育分数(单位:分)如下:39,40,42,40,42,42,43,44,则该组数据的众数、中位数分别为(  )
    A、40,42 B、42,43 C、42,42 D、42,41
  • 15、中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标(  )
    A、 B、 C、 D、
  • 16、12024的相反数是(  )
    A、12024 B、12024 C、2024 D、﹣2024
  • 17、2021年是农历辛丑牛年,习近平总书记勉励全国各族人民在新的一年发扬“为民服务孺子牛,创新发展拓荒牛,艰苦奋斗老黄牛”精神,某社区也开展了“迎新春牛年剪纸展”,下面的剪纸作品是轴对称图形的是(    )
    A、 B、 C、 D、
  • 18、3的倒数是(  )

    A、-3 B、13 C、-13 D、3
  • 19、如图,直线l1y=x+2与x轴相交于点A,直线l2y=kx+b经过点(3,2) , 与x轴相交于B(6,0) , 与y轴相交于C,与直线l1相交于点D.

    (1)、求直线l2的函数关系式;
    (2)、点P是l2上一点, 且SABP=52SABD , 求点P的坐标:
    (3)、设点Q的坐标为(m,4) , 是否存在m值,使QB+QD的值最小?若存在.请求出点Q坐标,如不存在,试说明理由.
  • 20、如图, 在RtABC中,ABC=90°,AB=8,BC=6 , 点D为AC边上的动点,点D从点 C出发,沿边CA向点A运动,当运动到点A时停止,若设点 D运动的时间为 t秒,点D运动的速度为每秒1个单位长度.

    (1)、当t=2时,求AD的长:
    (2)、求当t为何值时,CBD是直角三角形?说明理由:
    (3)、求当t为何值时,CBD是以BDCD为底的等腰三角形?并说明理由.
上一页 1 2 3 4 5 下一页 跳转