• 1、出租车司机小王某天上午营运全是在东西走向的大道上进行的,如果规定向东为正,向西为负,他这天上午的行程是(单位:千米):+153+1611+1012+415+1618
    (1)、将最后一名乘客送达目的地时,小王在出发点的什么方向?距上午出发点的距离是多少千米?
    (2)、汽车耗油量为0.6升/千米,出车时,油箱里有汽油72升,若小王将最后一名乘客送达目的地,再返回出发地,问小王今天下午是否需要加油?请说明理由.
  • 2、某校有一块长为6m , 宽为bm的长方形地块,如图所示,学校计划绿化阴影部分,中间留出边长为am的正方形空地,并在正方形空地上修建一座教育家雕像.

    (1)、试用含a,b的式子表示绿化面积S;
    (2)、若a=3mb=4m , 求绿化面积S的值.
  • 3、已知:A=2a2+5bB=4a23a
    (1)、求3AB的值;
    (2)、若 a+1+b22=0 , 求此时3AB 的值.
  • 4、已知x=4y=2
    (1)、若x>0y<0 , 求x+y的值;
    (2)、若x<y , 求xy的值.
  • 5、把下面数填在相应的集合内:

    1200.15-411π

    正数集合:{_______________}.

    分数集合:{________________}.

    非正整数集合:{___________________}.

  • 6、计算:-12 + (-4) ÷ |-2 |×12
  • 7、如图所示,以一根火柴棍为一边,用火柴棍拼成一排由正方形组成的图形,如果图形中含有100个正方形,需要根火柴棍

  • 8、若单项式2x2yn3xmy6是同类项,则m+n=
  • 9、若2<x<3 , 则x的整数值有个.
  • 10、有理数2的倒数是
  • 11、实数a,b,c在数轴上的对应点的位置如图所示,若a>b , 那下列结论中一定成立的是(       )

       

    A、b+c>0 B、 a+c <2 C、ba<1 D、 abc>0
  • 12、下列各题中的两个量成反比例关系的是(   )

    ①把200kg的苹果平均分装成若干箱,每箱苹果的质量(单位:kg)与箱数;

    ②三角形的面积是20cm2 , 它的一条边与这条边上的高;

    ③某工人每小时生产6个零件,他生产的零件数(单位:个)与生产时间(单位:h).

    A、①② B、①③ C、②③ D、①②③
  • 13、若多项式 2x2+4x1=5 ,则 x2+2x+1=(     )
    A、5 B、4 C、3 D、2
  • 14、多项式5x22x3的各项分别是(     )
    A、5x2,2x,3 B、5x2,2x,3 C、5x2,2x,3 D、5x2,2x,3
  • 15、用代数式表示“x与y的平方的差”(     )
    A、xy2 B、 xy C、(x-y)2 D、x2y
  • 16、下列各组数中,互为相反数的是(  )
    A、212 B、22 C、212 D、212
  • 17、由四舍五入法得到的近似数3.59×105精确到(   )位
    A、百分 B、十分 C、 D、
  • 18、用科学记数法表示10304000 , 应记为(     )
    A、1.0304×103 B、10.304×106 C、1.0304×107 D、1.0304×108
  • 19、在实数2,3 , 0,14这四个数中,最小的数是(       )
    A、2 B、3 C、0 D、14
  • 20、抛物线y=14x23与直线y=x交于AB两点(AB的左边).y=x

    (1)、求AB两点的坐标.
    (2)、如图1,若P是直线AB下方抛物线上的点.过点Px轴的平行线交抛物线于点M , 过点 Py轴的平行线交线段AB于点N , 满足PM=PN 求点P的横坐标.
    (3)、如图2,经过原点O的直线CD交抛物线于CD两点(点C在第二象限),连接ACBD分别交x轴于EF两点.若SDOF=43SCOF求直线CD的解析式.
上一页 165 166 167 168 169 下一页 跳转