• 1、如图,AOB是一个平角,BOC=42°46'OE平分BOC , 则AOE=

  • 2、已知关于x的多项式m4x3xn+xmn为二次三项式,则当x=1时,这个二次三项式的值是
  • 3、如图,OA的方向是北偏东10°OB的方向是西北方向,若AOC=AOBOC的方向是(       )

    A、北偏东65° B、北偏东55° C、东偏北15° D、东偏北25°
  • 4、如图,由5个大小相同的小正方体搭成的几何体,从上面看它得到的形状图是(  )

    A、 B、 C、 D、
  • 5、下列四个图中,能用1OMON三种方法表示同一个角的是(     )
    A、 B、 C、 D、
  • 6、中国教育在线发布的《2019年全国研究生招生调查报告》显示,2019年全国硕士研究生报名人数强势增长,达到2900000人,2900000这个数用科学记数法表示为(  )
    A、2.9×105 B、2.9×106 C、2.9×107 D、29×105
  • 7、如图,在平面直角坐标系中,直线l1:y=34x与直线l2:y=kx+b(k0)相交于点A(a,3) , 直线l2与y轴交于点B(0,5)

    (1)、求直线l2的函数解析式;
    (2)、将OAB沿直线l2翻折得到CAB , 使点O与点C重合,AC与x轴交于点D.求证:ACOB
    (3)、在直线BC下方是否存在点P,使BCP为等腰直角三角形?若存在,直接写出点P坐标;若不存在,请说明理由.
  • 8、如图,6×6网格中每个小正方形的边长都为1ABC的顶点均在网格的格点上.

    (1)、AB=          BC=          AC=             
    (2)、ABC是直角三角形吗?请作出判断并说明理由.
  • 9、将直线y=2x向上平移1个单位,得到一个一次函数的图象,所得一次函数的表达式是
  • 10、已知A(x1,y1)和点B(x2,y2)是直线y=-(k2+1)x上的两个点,如果x1<x2 , 那么y1y2的大小关系正确的是(     )
    A、y1>y2 B、y1<y2 C、y1=y2 D、无法判断
  • 11、若一个正比例函数的图象经过点4,5 , 则这个图象一定也经过点(       )
    A、5,4 B、45,1 C、54,1 D、5,4
  • 12、在平面直角坐标系中,点7,10在(       )
    A、第一象限 B、第二象限 C、第三象限 D、第四象限
  • 13、已知方程m2xm1+16=0是关于x的一元一次方程,则m的值为
  • 14、七年级学习代数式求值时,遇到这样一类题:“代数式axy+6+3x5y1的值与x的取值无关,求a的值”.通常的解题方法是:把xy看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=a+3x6y+5 , 所以a+3=0 , 则a=3

    (1)、如果关于x的多项式2m2+3x2mx的值与x的取值无关,那么m的值为__________.
    (2)、已知A=3x2+nx+2nB=x22nx+x , 且A3B的值与x的取值无关,求n的值.
    (3)、有7张如图1的小长方形,长为a , 宽为b , 按照如图2的方式不重叠地放在大长方形ABCD内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1 , 左下角的面积为S2 , 设AB=x , 当x变化时,5S13S2的值始终保持不变,求ab之间的数量关系.
  • 15、一个车间加工轴杆和轴承,每人每天平均可以加工轴杆6根或者轴承8个,1根轴杆与2个轴承为一套,该车间共有40人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?
  • 16、已知线段AB=6 , 延长AB至点C , 使BC=AB , 反向延长线段ABD , 使AD=AB

    (1)、按题意画出图形,并求出CD的长;
    (2)、若MN分别是ADBC的中点,求MN的长.
  • 17、先化简,再求值:x3x13y2+6x+13y2 , 其中x=2y=1
  • 18、解方程:x4x+26=22x44
  • 19、计算:229×132+4÷23
  • 20、如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,……,依此类推,经过次移动后该点到原点的距离为2025个单位长度.

上一页 994 995 996 997 998 下一页 跳转