-
1、【综合与实践】怎样才能命中篮筐
活动背景:学校组织班级间篮球比赛,九年级2班小斌发现自己投篮命中率较低,特请本班数学兴趣小组同学拍摄自己投篮图片(图1),并测量相应的数据进行研究.
模型建立:如图2所示,以小斌的起跳点为坐标原点,水平方向为轴,竖直方向为轴建立平面直角坐标系:篮球运动轨迹可以看作是抛物线的一部分.
信息整理:
素材1:篮球(P)出手时离地面的高度为米,篮筐中心离地面的高度米,篮球出手位置与篮筐中心的水平距离米,篮球距地面的最大高度米,此时离篮球出手位置的水平距离米.
素材2:由于篮球的直径大约是篮筐直径的一半,因此当篮球到达篮筐中心的水平位置时,篮球的高度(米)满足时,篮球即可命中篮筐;篮球运动轨迹抛物线的开口大小由投篮方向和出手速度决定,小斌在投篮过程中始终保持投篮方向和出手速度不变.
解决问题:在初次投篮时,数学兴趣小组同学测得相关数据为:米,米,米,米.
(1)、小斌初次投篮时能否命中篮筐,请说明理由:(2)、再次投篮时,小斌在离篮筐中心的水平距离5米处开始起跳投篮,若保持初次投篮时的出手高度,小斌此次_____命中篮筐(填写:“能”或“不能”)?若能请说明理由;若不能,那么要想命中篮筐,则的取值范围是多少? -
2、如图,在中,点E在的延长线上,与交于点F.
(1)、求证:;(2)、若的面积为4, , 求的面积. -
3、第十五届全运会开幕式上,吉祥物“喜洋洋”和“乐融融”以活泼可爱的形象亮相,成为全场焦点.如图,现有三张正面分别印有“喜洋洋”、“乐融融”和“全运会会徽”图案的不透明卡片A、B、C,卡片除正面图案不同外,其余均相同.将这三张卡片正面向下洗匀,小明从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.用画树状图(或列表)的方法,求小明抽出的两张卡片图案不同的概率.

-
4、解方程、计算.(1)、;(2)、 .
-
5、如图,在边长为1的正方形中,E为边上一动点(点E,B不重合),以为直角边在直线上方作等腰直角三角形 , , 连接 , 则在点E的运动过程中,周长的最小值是 .
-
6、如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为m.

-
7、下列方程是一元二次方程的是( )A、 B、 C、 D、
-
8、如图所示,在中,平分 , 点为线段上的一个动点,交的延长线于点 . 若 , , , 求证:为直角三角形.

-
9、仔细观察下列四个等式: , , , , ….(1)、请写出第六个等式;(2)、利用这几个等式的规律,归纳总结出一个表达此规律的等式;(3)、将表示上述规律的等式的右边认真整理,你会发现什么?
-
10、下面是三位同学学完分式后所做的三道题,请判断他们的解答是否正确,若不正确,给予改正.
甲:a为何值时,分式有意义?
解:∵原式= ,
∴当时,分式有意义.
乙:式子是分式还是整式?
解:∵原式 , 故是整式.
丙:化简分式 .
解: .
-
11、计算:(1)、;(2)、;(3)、;(4)、 .
-
12、计算: , .
-
13、如图, , , 点B,E,C,F在一条直线上.已知 , 则的面积为( )
A、24 B、26 C、32 D、48 -
14、如图,边长为9的正方形中放置两个长和宽分别为a,( , )的长方形,若长方形的周长为24,面积为35.75,则图中阴影部分的面积为( )
A、18.5 B、21.5 C、27.5 D、35.5 -
15、如图所示,甲、乙两个三角形中能用“”证明和全等的是( )
A、只有甲 B、只有乙 C、甲和乙 D、都不是 -
16、对于线段与点(点不在线段上)给出如下定义:点为线段上任意一点,如果线段的长度有最小值,那么称这个最小值为点与线段的“劣距”,记作;如果线段的长度有最大值,那么称这个最大值为点与线段的“优距”,记作 .
如图,中, , , .
(1)、 , ;(2)、点关于直线的对称点为 , 连接 . 若点在线段上,且]是[点 , 线段]的2倍,直接写出线段的长度;(3)、过点作 . 若点在直线上, , 直接写出的取值范围. -
17、如图,在中, , 射线交边于点 , 且 , 点关于直线的对称点为点 , 连接交于点 , 连接 , .
(1)、依题意补全图形;(2)、证明:;(3)、用等式表示 , 和的数量关系,并证明. -
18、如图,在中, , , , 平分交于点 , 于点 .
(1)、求证:;(2)、求的长. -
19、《千里江山图》是北宋王希孟创作的绢本设色画,现收藏于北京故宫博物院.如图是小山同学所画的一幅长方形的局部临摹作品,装裱前作品长为 , 宽为 , 将其四周装裱上边衬后,整幅作品长与宽的比是 , 且四周边衬的宽度相等,求边衬的宽度.

-
20、下面是证明在直角三角形中,如果一个锐角等于 , 那么它所对的直角边等于斜边的一半的两种添加辅助线的方法.选择其中一种,完成证明.
在直角三角形中,如果一个锐角等于 , 那么它所对的直角边等于斜边的一半.已知:如图,在中, , . 求证: .

方法一证明:如图,延长到点 , 使 , 连接 .

方法二证明:如图,在上截取 , 连接 .
