相关试卷
-
1、已知向量 , , 则( )A、30° B、150° C、60° D、120°
-
2、某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为 , 则( )A、 B、 C、 D、
-
3、某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是( )
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45
A、623 B、328 C、072 D、457 -
4、设数列是公比为q的等比数列,其前n项和为 .(1)、若 , , 求数列的前n项和;(2)、若 , , 成等差数列,求q的值并证明:存在互不相同的正整数m,n,p,使得 , , 成等差数列;(3)、若存在正整数 , 使得数列 , , …,在删去以后按原来的顺序所得到的数列是等差数列,求所有数对所构成的集合,
-
5、已知函数(为常数,且),且数列是首项为 , 公差为的等差数列.
(1)求证:数列是等比数列;
(2)若 , 当时,求数列的前项和的最小值;
(3)若 , 问是否存在实数 , 使得是递增数列?若存在,求出的范围;若不存在,说明理由.
-
6、已知函数的图象与轴正半轴的交点为 , .
(1)求数列的通项公式;
(2)令(为正整数),问是否存在非零整数 , 使得对任意正整数 , 都有?若存在,求出的值,若不存在,请说明理由.
-
7、已知数列 满足(1)、设 , 证明数列为等差数列,并求数列的通项公式;(2)、求数列的前项和.
-
8、已知数列共有5项,满足 , 且对任意有仍是该数列的某一项,现给出下列4个命题:①;②;③数列是等差数列;④集合中共有9个元素.则其中真命题的序号是( )A、①②③④ B、①④ C、②③ D、①③④
-
9、在等比数列中, , 则能使不等式成立的最大正整数是( )A、5 B、6 C、7 D、8
-
10、已知数列中满足 , , 则的最小值为( )A、9 B、7 C、 D、
-
11、已知{an}是等比数列,给出以下四个命题:①{2a3n-1}是等比数列;②{an+an+1}是等比数列;③{an·an+1}是等比数列;④{lg|an|}是等比数列.其中正确命题的个数是( )A、1 B、2 C、3 D、4
-
12、已知数列满足:对任意的均有 , 其中为不等于与的常数,若 , 则满足条件的所有可能值的和为 .
-
13、设数列为等差数列,数列为等比数列.若 , , 且( , , ),则数列的公比为.
-
14、已知数列满足 , 则.
-
15、若数列的通项公式的前项和为 , 则
-
16、数列满足 , 则.
-
17、等差数列的前项和分别为 , 若 , 则.
-
18、各项均为正数的等比数列中,成等差数列,则.
-
19、在等差数列中, , 从第9项开始为正数,则公差d的取值范围是 .
-
20、为等差数列的前项和, , 则与的等比中项为.