-
1、已知函数 , 则函数的零点个数是( )A、6 B、5 C、4 D、3
-
2、已知函数 , 若为偶函数,且在区间上不单调,则( )A、 B、 C、 D、
-
3、某机器上有相互啮合的大小两个齿轮,大轮有个齿,小轮有个齿,大轮每分钟转圈,若小轮的半径为 , 则小轮每秒转过的弧长是( ) .A、 B、 C、 D、
-
4、已知函数是定义在上的偶函数,且在上是单调递增的,设 , , 则的大小关系为( )A、 B、 C、 D、
-
5、已知幂函数 , 且的图象在第一象限内单调递增,则实数 ( )A、0 B、 C、3 D、3或
-
6、已知集合 , , 则( ).A、 B、 C、 D、
-
7、对于函数 , 若存在 , 使成立,则称为的不动点.已知函数.(1)、当时,求函数的不动点;(2)、若对任意实数 , 函数恒有两个相异的不动点,求的取值范围;(3)、在(2)的条件下,若的两个不动点为 , 且 , 求实数的取值范围.
-
8、已知点 , , 曲线上的点与两点的连线的斜率分别为和 , 且 , 在下列条件中选择一个,并回答问题(1)和(2).
条件①:;条件②: .
问题:
(1)、求曲线的方程;(2)、是否存在一条直线与曲线交于 , 两点,以为直径的圆经过坐标原点 . 若存在,求出的值;若不存在,请说明理由. -
9、如图,在四棱锥中,底面 , , , , 为棱上一点.(1)、若是的中点,求证:直线平面;(2)、若 , 且二面角的平面角的余弦值为 , 求三棱锥的体积
-
10、设函数 , 若方程有且仅有1个实数根,则实数的取值范围是 .
-
11、已知抛物线的焦点为 , 准线交轴于点 , 直线过且交于不同的两点,在线段上,点为在上的射影.线段交轴于点 , 下列命题正确的是( )A、对于任意直线 , 均有 B、不存在直线 , 满足 C、对于任意直线 , 直线与抛物线相切 D、存在直线 , 使
-
12、已知当时,函数取得最大值2,则( )A、 B、 C、 D、
-
13、已知是等差数列的前项和,且 , , 则( )A、数列为递增数列 B、 C、的最大值为 D、
-
14、某个班级有55名学生,其中男生35名,女生20名,男生中有20名团员,女生中有12名团员.在该班中随机选取一名学生,A表示“选到的是团员”,B表示“选到的是男生”,则等于( )A、 B、 C、 D、
-
15、已知集合 , 且 , 则等于( )A、或 B、 C、 D、
-
16、函数的定义域为D,若存在正实数k,对任意的 , 总有 , 则称函数具有性质.(1)、分别判断函数与是否具有性质 , 并说明理由;(2)、已知为二次函数,且具有性质 , 判断的奇偶性;(3)、已知 , k为给定的正实数,若函数具有性质 , 求a的取值范围.
-
17、已知.(1)、求的单调递增区间;(2)、若对任意的恒成立,求a的取值范围;(3)、已知函数 , 记方程在区间上的根从小到大依次为 , , …, , 求的值.
-
18、设函数.(1)、当时,求方程的实数解;(2)、当时,
(ⅰ)存在 , 使不等式成立,求k的范围;
(ⅱ)设函数 , 若对任意的 , 总存在 , 使 , 求实数b的取值范围.
-
19、已知函数 , , .(1)、当 , 且时,解关于x的不等式;(2)、若 , , , 求的最小值.
-
20、已知 , 为锐角, , .(1)、求的值;(2)、求的值.