• 1、已知关于x的一元二次不等式ax2+bx+6>0的解集为{x|3<x<2} , 则a+b的值为(       )
    A、2 B、1 C、0 D、2
  • 2、已知函数f(x)的定义域和值域均为0,2 , 则f(x)的图象可能为(       )
    A、 B、 C、 D、
  • 3、下列函数中,在区间(,0)上单调递减的是(       )
    A、f(x)=x B、f(x)=1x C、f(x)=x2+2x D、f(x)=|x|
  • 4、命题“xRx20”的否定是(       )
    A、xRx2<0 B、xRx20 C、xRx2<0 D、xRx20
  • 5、已知集合A={0,1,2}B={0,1} , 则AB=(       )
    A、{1} B、{2} C、{0,1} D、{0,1,2}
  • 6、已知集合A={x|2x15}、集合B={x|m+1x2m1}mR).
    (1)、若AB= , 求实数m的取值范围;
    (2)、设命题pxA;命题qxB , 若命题p是命题q的必要不充分条件,求实数m的取值范围.
  • 7、已知集合M=0,1,2N=xx23x<0 , 则MN=(       )
    A、0,1,2 B、1,2 C、x0x<3 D、x0<x<3
  • 8、设f(x)=x2gx=fx,x0fx,x<0 ,则不等式gx2+x的解集为.
  • 9、设函数y=fx的定义域为开区间I , 若存在x0I , 使得y=fxx=x0处的切线ly=fx的图像只有唯一的公共点,则称y=fx为“L函数”,切线l为一条“L切线”.
    (1)、判断y=x1是否是函数y=lnx的一条“L切线”,并说明理由;
    (2)、设gx=e2x6x , 求证:y=gx存在无穷多条“L切线”;
    (3)、设fx=x3+ax2+10<x<c , 求证:对任意实数a和正数cy=fx都是“L函数”
  • 10、记代数式M=logaxa2+x2a+19,N=(1x)16+(4+x)38.
    (1)、当a=2时,求使代数式M有意义的实数x的集合;
    (2)、若存在实数x使得代数式M+N有意义,求实数a的取值范围.
  • 11、某人购买某种教育基金,今年5月1日交了10万元,年利率5%,以后每年5月1日续交2万元,设从今年起每年5月1日的教育基金总额依次为a1a2a3 , …….
    (1)、写出a2a3 , 并求出an+1an之间的递推关系式;
    (2)、求证:数列an+40为等比数列,并求出数列an的通项公式.
  • 12、已知f(x)=sinωxω>0.
    (1)、函数y=f(x)的最小正周期是4π , 求ω , 并求此时f(x)=12的解集;
    (2)、已知ω=1g(x)=f2(x)+3f(x)f(π2x) , 求函数y=gxx[0,π4]的值域.
  • 13、已知平面向量abc满足b=2a+b=1c=λa+μb , 且λ+2μ=1 . 若对每一个确定的向量a , 记c的最小值为m . 现有如下两个命题

    命题P:a变化时,m的最大值为23

    命题Q:当a变化时,m可以取到最小值0;

    则下列选项中,正确的是(    )

    A、P为真命题,Q为假命题 B、P为假命题,Q为真命题 C、PQ都为真命题 D、PQ都为假命题
  • 14、若实数xym满足x-m<y-m , 则称xy接近m.若围棋状态空间复杂度的上限M约为3361 , 而可观测宇宙中普通物质的原子总数N约为1080 , 则下列各数中最接近MN的是(    )
    A、1033 B、1053 C、1073 D、1093
  • 15、若abR , 且ab>0 , 则下列不等式恒成立的是(    )
    A、a2+b2a+b B、a+b2ab C、ba+ab2 D、a2+b24ab
  • 16、已知等差数列A:a1,a2,,an, , 若存在有穷等比数列B:b1,b2,,bN , 其中b1=1 , 公比为q , 满足bk1ak1bk , 其中k=2,3,,N , 则称数列B为数列A的长度为N的“等比伴随数列”.数列A的通项公式为an=n , 数列B为数列A的长度为N的“等比伴随数列”,则N的最大值为
  • 17、若函数y=fx的表达式为fx=ax+1,x<ax22,xa , 且存在最小值,则a的取值范围为
  • 18、设A1A2A3A7是均含有2个元素的集合,且A1A7=AiAi+1=i=1,2,3,,6 , 记B=A1A2A3A7 , 则B中元素个数的最小值是
  • 19、下图为某地出土的一块三角形瓷器片,其一角已破损.为了复原该三角形瓷器片,现测得如下数据:AB=34.64cmAD=10cm,BE=14cm,A=B=π6 , 则D,E两点间距离为cm.(精确到1cm)

  • 20、若函数fx=exax在区间0,1上有极值点,则实数a的取值范围是.
上一页 901 902 903 904 905 下一页 跳转